EBK THE COSMIC PERSPECTIVE
9th Edition
ISBN: 9780135161760
Author: Voit
Publisher: VST
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 45EAP
To determine
To Discuss: Whether scientists should expect to find meteorites that come from other star systems.
The information that can be obtained from meteorite from another stellar system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
How would the solar system be different if the solar nebula had cooled, with a temperature half its actual value? [select all that apply]
options:
There would be more comets.
Life would have been very unlikely to evolve here.
There would be no comets.
There would be fewer asteroids.
There would be more asteroids.
Jovian planets would have formed closer to Sun.
Terrestrial planets would be large
We think the terrestrial planets formed around solid “seeds” that later grew over time through the accretion of rocks and metals.
a) Suppose the Earth grew to its present size in 1 million years through the accretion of particles averaging 100 grams each. On average, how many particles did the Earth capture per second, given that the mass of the Earth is = 5.972 × 10 ^24 kg ?
b) If you stood on Earth during its formation and watched a region covering 100 m^2, how many impacts would you expect to see in one hour. Use the impact rate you calculated in part a. You’ll need the following as well: the radius of the Earth is = 6.371 × 10 ^6 m and the surface area of the Earth is 4??^2Earth
There is only one part to this question and I need to know the impacts. Thank you!!
Chapter 8 Solutions
EBK THE COSMIC PERSPECTIVE
Ch. 8 - Prob. 1VSCCh. 8 - Prob. 2VSCCh. 8 - Prob. 3VSCCh. 8 -
Briefly describe the four major features of our...Ch. 8 - What is the nebular theory, and why is it widely...Ch. 8 - What do we mean by the solar nebula? What was it...Ch. 8 -
4. Describe the three key processes that led the...Ch. 8 - List the approximate condensation temperature and...Ch. 8 - What was the frost line? Which ingredients...Ch. 8 - Briefly describe the process by which terrestrial...
Ch. 8 - How was the formation of jovian planets similar to...Ch. 8 - What is the solar wind, and what roles did it play...Ch. 8 - How did planet formation lead to the existence of...Ch. 8 - What was the heavy bombardment, and when did it...Ch. 8 - What is the leading hypothesis for the Moon’s...Ch. 8 - Prob. 13EAPCh. 8 - How old is the solar system, and how do we know?Ch. 8 - Surprising Discoveries? Suppose we found a solar...Ch. 8 - Prob. 16EAPCh. 8 - Surprising Discoveries? Suppose we found a solar...Ch. 8 - Prob. 18EAPCh. 8 - Prob. 19EAPCh. 8 - Prob. 20EAPCh. 8 - Prob. 21EAPCh. 8 - Prob. 22EAPCh. 8 - Prob. 23EAPCh. 8 - Prob. 24EAPCh. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Prob. 28EAPCh. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Prob. 31EAPCh. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Choose the best answer to each of the following....Ch. 8 - Explaining the Past. Is it really possible for...Ch. 8 - Prob. 37EAPCh. 8 - Prob. 38EAPCh. 8 - An Early Solar Wind. Suppose the solar wind had...Ch. 8 - Angular Momentum. Suppose our solar nebula had...Ch. 8 - Two Kinds of Planets. The jovian planets differ...Ch. 8 - Prob. 43EAPCh. 8 - Prob. 44EAPCh. 8 - Prob. 45EAPCh. 8 - Prob. 46EAPCh. 8 - Lucky to Be Here? Considering the overall process...Ch. 8 - Radiometric Dating. You are dating rocks by their...Ch. 8 - Lunar Rocks. You are dating Moon rocks based on...Ch. 8 - Carbon-14 Dating. The half-life of carbon-14 is...Ch. 8 - Prob. 51EAPCh. 8 - Icy Earth. How massive would Earth have to have...Ch. 8 - What Are the Odds? The fact that all the planets...Ch. 8 - Spinning Up the Solar Nebula. The orbital speed of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider the differentiated meteorites. We think the irons are from the cores, the stony-irons are from the interfaces between mantles and cores, and the stones are from the mantles of their differentiated parent bodies. If these parent bodies were like Earth, what fraction of the meteorites would you expect to consist of irons, stony-irons, and stones? Is this consistent with the observed numbers of each? (Hint: You will need to look up what percent of the volume of Earth is taken up by its core, mantle, and crust.)arrow_forwardIf you could visit another planetary system while the planets are forming, would you expect to see the condensation sequence at work, or do you think that process was most likely unique to our Solar System? How do the properties of the extrasolar planets discovered so far affect your answer? Do you expect the most planetary system in the Universe have analogs to our Solar System’s asteroid belt and Kuiper Belt? Would all planetary systems show signs of an age of heavy bombardment? If the solar nebula hypothesis is correct, do you think there are more planets in the Universe than stars? Why or why not?arrow_forwardHow many impacts would you expect to strike a 100m2 region in one hour during Earth’s formation, assuming that Earth grew to its present size in 10 million years from particles averaging 100 grams each? (Hint: Assume that Earth had its current radius of 6378km.) (Notes: The surface area of a sphere is 4pir2 ; 1yr=3.2x107 .) a. About 1300. b. About 13 . c. About 13,000. d. About 130arrow_forward
- ____ impactsarrow_forward1) How massive would Earth had been if it had accreted hydrogen compounds in addition to the sme properties listed in table 7.1? (Assume the same properties of the ingredients as listed in the table) 2) Now imagine that Earth had been able to capture hydrogen and helium gas in the same proportions as listed in the table. How massive would it have been?arrow_forwardYou decide to go on an interstellar mission to explore some of the newly discovered extrasolar planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From your observations of these planets, you collect the following data: Density Average Distance from star (AU] Planet Mass Radius Albedo Temp. [C] Surf. Press. MOI Rotation [Earth = 1] (Earth = 1] [g/cm³] [Atm.] Period (Hours] Factor SIEVER EUGENIA 4.0 0.001 2.0 0.1 5.0 1.0 0.3 20 0.8 N/A 3.0 0.2 N/A 0.3 0.4 0.35 20 10 500 1000 5.0 4.0 0.5 0.8 0.4 0.7 -50 MARLENE CRILE 1.0 1.0 3.0 8.0 1,5 0.0 0.50 0.50 0.25 150 0.4 JANUS 100 12 0.1 10 -80 0.2 200 Figure 1: А Rotor 850 890 900 Wavelength (nm) A Sun В C 860 900 910 Wavelength (nm) 2414 a asarrow_forward
- What is the frost line in the solar nebula? Explain how temperature differences led to the formation of two distinct types of planets.arrow_forwardIf you stood on Earth during its formation, during which it captured about 1.4 ✕ 1011 particles per second, and watched a region covering 310 m2, how many impacts would you expect to see in an hour? (Notes: The surface area of a sphere is 4πr2. Hint: Assume that Earth had its current radius of 6,378 km.) [......] impactsarrow_forwardThe iron meteorite that created Barringer Crater (Arizona) was 50 m in diameter. It caused a crater 1.2 km (1200 m) in diameter, that is, 24 times bigger than the impactor. Keeping in mind that the size of the crater depends on many factors, such as the type of rocks present in the area, estimate the approximate size of the impactor that produced Mare Serenitatis.arrow_forward
- Please help me with this question. A=.2arrow_forwardThere is one part to this question. I need to know the km/s. Thank you!arrow_forwardPresent theory suggests that giant planets cannot form without condensation of water ice, which becomes vapor at the high temperatures close to a star. So how can we explain the presence of jovian-sized exoplanets closer to their star than Mercury is to our Sun?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY