A car is designed to get its energy from a rotating solid-disk flywheel with a radius of 2.00 m and a mass of 5.00 × 10 2 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel’s rotational speed up to 5.00 × 10 3 rev/min. (a) Find the kinetic energy stored in the flywheel, (b) If the fly-wheel is to supply energy to the car as a 10.0-hp motor would, find the length of time the car could run before the flywheel would have to be brought back up to speed.
A car is designed to get its energy from a rotating solid-disk flywheel with a radius of 2.00 m and a mass of 5.00 × 10 2 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel’s rotational speed up to 5.00 × 10 3 rev/min. (a) Find the kinetic energy stored in the flywheel, (b) If the fly-wheel is to supply energy to the car as a 10.0-hp motor would, find the length of time the car could run before the flywheel would have to be brought back up to speed.
Solution Summary: The author explains how the kinetic energy stored in the flywheel is 1.37times 108J.
A car is designed to get its energy from a rotating solid-disk flywheel with a radius of 2.00 m and a mass of 5.00 × 102 kg. Before a trip, the flywheel is attached to an electric motor, which brings the flywheel’s rotational speed up to 5.00 × 103 rev/min. (a) Find the kinetic energy stored in the flywheel, (b) If the fly-wheel is to supply energy to the car as a 10.0-hp motor would, find the length of time the car could run before the flywheel would have to be brought back up to speed.
Early on in the video game Shadow of the Tomb Raider Lara Croft uses a winch to pull a heavy crate of stone up a 23.6° incline. If Lara causes the 66.0 kg crate to accelerate at 2.79 m/s2 up the ramp, what is the tension in the rope pulling the block? The coefficient of kinetic friction between the block and the ground is 0.503.
A player kicks a football at the start of the game. After a 4 second flight, the ball touches the ground 50 m from the kicking tee. Assume air resistance is negligible and the take-off and landing height are the same (i.e., time to peak = time to fall = ½ total flight time). (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
A shot putter releases a shot at 13 m/s at an angle of 42 degrees to the horizontal and from a height of 1.83 m above the ground. (Note: For each question draw a diagram to show the vector/s. Show all the step and provide units in the answers. Provide answer to 2 decimal places unless stated otherwise.) Calculate and answer all parts. Only use equations PROVIDED:
Human Biology: Concepts and Current Issues (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.