(a)
The total Kinetic Energy of the two blocks.
(a)
Answer to Problem 41P
The total kinetic energy of the two blocks is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given as,
Here,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the total kinetic energy of the two blocks is
(b)
The velocity of centre of mass of the two block system.
(b)
Answer to Problem 41P
The velocity of centre of mass of the two block system is
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for momentum is given as,
Calculation:
The momentum of the system remains conserved and it can be calculated as,
Conclusion:
Therefore, the velocity of centre of mass of the two block system is
(c)
The velocity of each block relative to the centre of mass.
(c)
Answer to Problem 41P
The velocity of the block 1 relative to the centre of mass is
Explanation of Solution
Given:
The velocity of the block 1 in positive x direction is
The velocity of block 2 in negative x direction
Formula used:
The expression for the velocity with respect to centre of mass is given as,
Here,
Calculation:
The velocity of block 1 with respect to the centre of mass can be calculated as,
The velocity of block 2 with respect to the centre of mass can be calculated as,
Conclusion:
Therefore, the velocity of the block 1 relative to the centre of mass is
(d)
The kinetic energy of the blocks relative to the centre of mass.
(d)
Answer to Problem 41P
The kinetic energy of the blocks relative to the centre of mass is
Explanation of Solution
Given:
The velocity of the block 1 in positive x direction is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
Further solving the above equation,
Conclusion:
Therefore, the kinetic energy of the blocks relative to the centre of mass is
(e)
The proof that the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
(e)
Answer to Problem 41P
The kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Explanation of Solution
Given:
The mass of block 1 is
The velocity of the block 1 in positive x direction is
The mass of block 2 is
The velocity of block 2 in negative x direction
Formula used:
The expression for kinetic energy is given by,
Calculation:
The total Kinetic energy of the two blocks can be calculated as,
The above result is equal to
Conclusion:
Therefore, the kinetic energy in part (a) is greater than the kinetic energy in part (d) by an amount equal to the kinetic energy with respect to centre of mass.
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers, Vol. 1
- 3.37(a) Five free electrons exist in a three-dimensional infinite potential well with all three widths equal to \( a = 12 \, \text{Å} \). Determine the Fermi energy level at \( T = 0 \, \text{K} \). (b) Repeat part (a) for 13 electrons. Book: Semiconductor Physics and Devices 4th ed, NeamanChapter-3Please expert answer only. don't give gpt-generated answers, & please clear the concept of quantum states for determining nx, ny, nz to determine E, as I don't have much idea about that topic.arrow_forwardNo chatgpt pls will upvotearrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: Incident ray at A Note: This diagram is not to scale. a Air (n = 1.00) Water (n = 1.34) 1) Determine the angle of refraction of the ray of light in the water. Barrow_forward
- Hi can u please solvearrow_forward6. Bending a lens in OpticStudio or OSLO. In either package, create a BK7 singlet lens of 10 mm semi-diameter and with 10 mm thickness. Set the wavelength to the (default) 0.55 microns and a single on-axis field point at infinite object distance. Set the image distance to 200 mm. Make the first surface the stop insure that the lens is fully filled (that is, that the entrance beam has a radius of 10 mm). Use the lens-maker's equation to calculate initial glass curvatures assuming you want a symmetric, bi-convex lens with an effective focal length of 200 mm. Get this working and examine the RMS spot size using the "Text" tab of the Spot Diagram analysis tab (OpticStudio) or the Spd command of the text widnow (OSLO). You should find the lens is far from diffraction limited, with a spot size of more than 100 microns. Now let's optimize this lens. In OpticStudio, create a default merit function optimizing on spot size.Then insert one extra line at the top of the merit function. Assign the…arrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answer .arrow_forward
- Use the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardUse the following information to answer the next question. Two mirrors meet an angle, a, of 105°. A ray of light is incident upon mirror A at an angle, i, of 42°. The ray of light reflects off mirror B and then enters water, as shown below: A Incident ray at A Note: This diagram is not to scale. Air (n = 1.00) Water (n = 1.34) Barrow_forwardGood explanation it sure experts solve it.arrow_forward
- No chatgpt pls will upvote Asaparrow_forwardA satellite has a mass of 100kg and is located at 2.00 x 10^6 m above the surface of the earth. a) What is the potential energy associated with the satellite at this loction? b) What is the magnitude of the gravitational force on the satellite?arrow_forwardNo chatgpt pls will upvotearrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill