Physics for Scientists and Engineers, Vol. 1
6th Edition
ISBN: 9781429201322
Author: Paul A. Tipler, Gene Mosca
Publisher: Macmillan Higher Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 37P
To determine
The velocity of the fragments after the explosion.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Two identical particles of mass m approach each otherat equal and opposite speeds, v. The collision is completelyinelastic and results in a single particle at rest. What is themass of the new particle? How much energy was lost in thecollision? How much kinetic energy was lost in this collision?
Kindly check the answer in picture containing the question before submitting the solution.
A particle with massmAis struck head-on by another particle with massmBthat isinitially moving at speed V0. The collision is elastic.
(a) What percentage of the original energy does each particle have after the collision?
(b) For what values, if any, of the mass ratio mA/mB is the original kinetic energy sharedequally by the two particles after the collision?
Chapter 8 Solutions
Physics for Scientists and Engineers, Vol. 1
Ch. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10P
Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Prob. 15PCh. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Prob. 40PCh. 8 - Prob. 41PCh. 8 - Prob. 42PCh. 8 - Prob. 43PCh. 8 - Prob. 44PCh. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - Prob. 48PCh. 8 - Prob. 49PCh. 8 - Prob. 50PCh. 8 - Prob. 51PCh. 8 - Prob. 52PCh. 8 - Prob. 53PCh. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - Prob. 56PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Prob. 62PCh. 8 - Prob. 63PCh. 8 - Prob. 64PCh. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68PCh. 8 - Prob. 69PCh. 8 - Prob. 70PCh. 8 - Prob. 71PCh. 8 - Prob. 72PCh. 8 - Prob. 73PCh. 8 - Prob. 74PCh. 8 - Prob. 75PCh. 8 - Prob. 76PCh. 8 - Prob. 77PCh. 8 - Prob. 78PCh. 8 - Prob. 79PCh. 8 - Prob. 80PCh. 8 - Prob. 81PCh. 8 - Prob. 82PCh. 8 - Prob. 83PCh. 8 - Prob. 84PCh. 8 - Prob. 85PCh. 8 - Prob. 86PCh. 8 - Prob. 87PCh. 8 - Prob. 88PCh. 8 - Prob. 89PCh. 8 - Prob. 90PCh. 8 - Prob. 91PCh. 8 - Prob. 92PCh. 8 - Prob. 93PCh. 8 - Prob. 94PCh. 8 - Prob. 95PCh. 8 - Prob. 96PCh. 8 - Prob. 98PCh. 8 - Prob. 99PCh. 8 - Prob. 100PCh. 8 - Prob. 101PCh. 8 - Prob. 102PCh. 8 - Prob. 103PCh. 8 - Prob. 104PCh. 8 - Prob. 105PCh. 8 - Prob. 106PCh. 8 - Prob. 107PCh. 8 - Prob. 108PCh. 8 - Prob. 109PCh. 8 - Prob. 110PCh. 8 - Prob. 111PCh. 8 - Prob. 112PCh. 8 - Prob. 113PCh. 8 - Prob. 114PCh. 8 - Prob. 115PCh. 8 - Prob. 116PCh. 8 - Prob. 117P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In an elastic collision of two particles with masses m1 and m2, the initial velocities are u1 and u2 = u1. If the initial kinetic energies of the two particles are equal, find the conditions on u1/u2 and m1/m2 such that m1 is at rest after the collision. Examine both cases for the sign of .arrow_forwardA particle of mass m moving along the x-axis with a velocity component +u collides head-on and sticks to a particle of mass m/3 moving along the x-axis with the velocity component −u. What is the mass M of the resulting particle?arrow_forwardIn this problem, the distance units are meters and the time units are sec- onds. Consider two particles p and q in 2-D or 3-D space, with respective masses n kg and m kg, that approach cach other, collide elastically, and then bounce off. Suppose is the initial constant velocity of p, and is the initial velocity of q (see the "Before Collision" picture below). After the collision, p and q have constant velocities of uƒ ‡ ♂ and vƒ ‡ ♂, respectively (see the "After Collision" picture below). Beforedli the stepeni ullision After the collision collision point 2-D р Constant 3-D 2 • V 6 Constant) velocities (1) Calculate a formula for the radian angle 0 € [0, π] between the path of p and the path of q after the collision, in terms of the scalar quantities m, n, |||| and |||| (and only these quantities). (2) In the case where p and q have the same mass, calculate exactly.arrow_forward
- i need the answer quicklyarrow_forwardA ball of mass, m, = 100g, traveling with a velocity V = 50 cm/sec collides “head-on" with a ball of mass m, = 200g which is, initially at rest. Calculate the final velocities, V, and V2p in the event that the collision is elastic.arrow_forwardIn one type of nuclear radioactive decay, an electron and arecoil nucleus are emitted but often do not separate alongthe same line. Use conservation of momentum in twodimensions to explain why this implies the emission of atleast one other particle (it came to be called a “neutrino”).arrow_forward
- (a) If the system's kinetic energy, as measured from the Earth reference frame, decreases by 20% because of the collision, what are the final velocities of the balls? (b) What change in internal energy has occurred? (c) An observer watches this collision from a reference frame moving at a velocity of 15 m/ s to the east relative to the Earth reference frame. What changes in kinetic energy does this observer measure?arrow_forwardWhy is (mr)a added to the first moment equation?arrow_forwardPlease asaparrow_forward
- A 1.0 kg mass with a speed of 4.5 m/s strikes a 2.0 kg mass at rest. For a completely inelastic collision, find: (a) The speed of the masses after the collision. (b) The change in kinetic energy. (c) The momentum after the collision.arrow_forwardA remote controlled toy car of mass 7.9 kg is moving with a velocity of 2.6 m/s along x- axis makes a complete inelastic collission with another identical car at rest (stick together and move with same velocity along the same direction). What is the change in ?the kinetic energy (Joules) of the system?arrow_forwardA particle of mass 5kg has no initial velocity. It decays into two particles both having the same mass. Calculate their velocities given that both energy and momentum are conserved.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Modern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:9780534408961
Author:Stephen T. Thornton, Jerry B. Marion
Publisher:Cengage Learning
Impulse Derivation and Demonstration; Author: Flipping Physics;https://www.youtube.com/watch?v=9rwkTnTOB0s;License: Standard YouTube License, CC-BY