CONCEPTUAL PHYSICS LL FD
12th Edition
ISBN: 9780135745816
Author: Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 40RCQ
To determine
The tension in a horizontal string
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
no ai please
A block of mass m₁ = 1.85 kg and a block of mass m₂
is 0.360 for both blocks.
=
m
M, R
m2
Ꮎ
5.90 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction
(a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.)
x m/s²
(b) Determine the tensions in the string on both sides of the pulley.
left of the pulley
× N
right of the pulley
X N
Enter a number.
What is the error determined by the 2/3 rule?
Chapter 8 Solutions
CONCEPTUAL PHYSICS LL FD
Ch. 8 - What are the units of measurement for tangential...Ch. 8 - On a rotating turntable, does tangential speed or...Ch. 8 - A tapered cup rolled on a flat surface makes a...Ch. 8 - How does the tapered rim of a wheel on a railroad...Ch. 8 - 5. What is rotational inertia, and how is it...Ch. 8 - 6. Inertia depends on mass; rotational inertia...Ch. 8 - 7. As distance increases between most of the mass...Ch. 8 - 8. Consider three axes of rotation for a pencil:...Ch. 8 - 9. Which is easier to get swinging: a baseball bat...Ch. 8 - Why does bending your legs when running enable you...
Ch. 8 - 11. Which will have the greater acceleration...Ch. 8 - 12. What does a torque tend to do to an object?
Ch. 8 - 13. What is meant by the “lever arm” of a...Ch. 8 - 14. How do clockwise and counterclockwise torques...Ch. 8 - 15. If you toss a stick into the air, it appears...Ch. 8 - Prob. 16RCQCh. 8 - 17. If you hang at rest by your hands from a...Ch. 8 - Where is the center of mass of a hollow soccer...Ch. 8 - 19. What is the relationship between the center of...Ch. 8 - 20. Why doesn’t the Leaning Tower of Pisa topple...Ch. 8 - 21. In terms of center of gravity, support base,...Ch. 8 - 22.When you whirl a can at the end of a string in...Ch. 8 - 23. Is it an inward force or an outward force that...Ch. 8 - 24. If the string that holds a whirling can in its...Ch. 8 - 25. If you are not wearing a seat belt in a car...Ch. 8 - 26. Why is centrifugal force in a rotating frame...Ch. 8 - 27. How can gravity be simulated in an orbiting...Ch. 8 - 28. Distinguish between linear momentum and...Ch. 8 - 29. What is the law of inertia for rotating...Ch. 8 - If a skater who is spinning pulls her arms in so...Ch. 8 - Contact Grandpa and tell him how you’re learning...Ch. 8 - Prob. 32RCQCh. 8 - Prob. 33RCQCh. 8 - Prob. 34RCQCh. 8 - Prob. 35RCQCh. 8 - Prob. 36RCQCh. 8 - Prob. 37RCQCh. 8 - Torque = lever arm ×...Ch. 8 - 39. Calculate the torque produced by the same 50-N...Ch. 8 - Prob. 40RCQCh. 8 - 41. Calculate the force of friction that keeps an...Ch. 8 - Angular momentum =...Ch. 8 - 43. If a persons speed doubles and all else...Ch. 8 - 44. The diameter of the base of a tapered...Ch. 8 - To tighten a bolt, you push with a force of 80 N...Ch. 8 - 46. The rock and meterstick balance at the 25-cm...Ch. 8 - In one of the photos at the beginning of this...Ch. 8 - 48. An ice puck of mass m revolves on an icy...Ch. 8 - 49. If a trapeze artist rotates once each second...Ch. 8 - A small space telescope at the end of a tether...Ch. 8 - 51. The three cups are rolled on a level surface....Ch. 8 - 52. Three types of rollers are placed on slightly...Ch. 8 - 53. Beginning from a rest position, a solid disk...Ch. 8 - 54. You hold a meterstick at one end with the same...Ch. 8 - 55. Three physics majors in good physical shape...Ch. 8 - Prob. 56RCQCh. 8 - Prob. 57RCQCh. 8 - Prob. 58RCQCh. 8 - 59. The wheels of railroad trains are tapered, a...Ch. 8 - Prob. 60RCQCh. 8 - 61. The front wheels of a racing vehicle are...Ch. 8 - 62. Which will have the greater acceleration...Ch. 8 - Prob. 63RCQCh. 8 - 64. Is the net torque changed when a partner on a...Ch. 8 - Prob. 65RCQCh. 8 - 66. When you pedal a bicycle, maximum torque is...Ch. 8 - Prob. 67RCQCh. 8 - Prob. 68RCQCh. 8 - Prob. 69RCQCh. 8 - Prob. 70RCQCh. 8 - 71. Explain why a long pole is more beneficial to...Ch. 8 - Prob. 72RCQCh. 8 - Prob. 73RCQCh. 8 - Prob. 74RCQCh. 8 - Prob. 75RCQCh. 8 - Prob. 76RCQCh. 8 - Prob. 77RCQCh. 8 - Prob. 78RCQCh. 8 - 79. The centers of gravity of the three trucks...Ch. 8 - Prob. 80RCQCh. 8 - Prob. 81RCQCh. 8 - Prob. 82RCQCh. 8 - 83. When you are in the front passenger seat of a...Ch. 8 - Prob. 84RCQCh. 8 - Prob. 85RCQCh. 8 - Prob. 86RCQCh. 8 - 87. The occupant inside a rotating space habitat...Ch. 8 - Prob. 88RCQCh. 8 - A motorcyclist is able to ride on the vertical...Ch. 8 - 90. The sketch shows a conical pendulum. The bob...Ch. 8 - Prob. 91RCQCh. 8 - Prob. 92RCQCh. 8 - Prob. 93RCQCh. 8 - 94. If all of Earth’s inhabitants moved to the...Ch. 8 - Prob. 95RCQCh. 8 - If the world’s populations moved to the North Pole...Ch. 8 - Prob. 97RCQCh. 8 - 98. Why does a typical small helicopter with a...Ch. 8 - 99. We believe that our galaxy was formed from a...Ch. 8 - Prob. 100RCQCh. 8 - Prob. 101RCQCh. 8 - Prob. 102RCQCh. 8 - Prob. 103RCQCh. 8 - 104.When a car drives off a cliff it rotates...Ch. 8 - 105. Discuss why a car noses up when accelerating...Ch. 8 - 106. Discuss how a ramp would help you to...Ch. 8 - 107. Which will roll down an incline faster: a can...Ch. 8 - 108. Why are lightweight tires preferred in...Ch. 8 - 109. A youngster who has entered a soapbox derby...Ch. 8 - 110. The spool is pulled in three ways, as shown....Ch. 8 - 111. Nobody at the playground wants to play with...Ch. 8 - 112. How can the three bricks be stacked so that...Ch. 8 - 113. A long track balanced like a seesaw supports...Ch. 8 - With respect to Diana’s finger, where is the...Ch. 8 - When a long-range cannonball is fired toward the...Ch. 8 - Most often we say that force causes acceleration....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Your colleague gives you a sample that are supposed to consist of Pt-Ni nanoparticles, TiO2 nanorod arrays, and SiO2 monolith plates (see right panel schematic). The bimetallic Pt-Ni nanoparticles are expected to decorate on the side surfaces of the aligned TiO2 nanorod arrays. These aligned TiO2 nanoarrays grew on the flat SiO2 monolith. Let's assume that the sizes of the Pt-Ni nanoparticles are > 10 nm. We further assume that you have access to a modern SEM that can produce a probe size as small as 1 nm with a current as high as 1 nA. You are not expected to damage/destroy the sample. Hint: keep your answers concise and to the point. TiO₂ Nanorods SiO, monolith a) What do you plan to do if your colleague wants to know if the Pt and Ni formed uniform alloy nanoparticles? (5 points) b) If your colleague wants to know the spatial distribution of the PtNi nanoparticles with respect to the TiO2 nanoarrays, how do you accomplish such a goal? (5 points) c) Based on the experimental results…arrow_forwardFind the current in 5.00 and 7.00 Ω resistors. Please explain all reasoningarrow_forwardFind the amplitude, wavelength, period, and the speed of the wave.arrow_forward
- A long solenoid of length 6.70 × 10-2 m and cross-sectional area 5.0 × 10-5 m² contains 6500 turns per meter of length. Determine the emf induced in the solenoid when the current in the solenoid changes from 0 to 1.5 A during the time interval from 0 to 0.20 s. Number Unitsarrow_forwardA coat hanger of mass m = 0.255 kg oscillates on a peg as a physical pendulum as shown in the figure below. The distance from the pivot to the center of mass of the coat hanger is d = 18.0 cm and the period of the motion is T = 1.37 s. Find the moment of inertia of the coat hanger about the pivot.arrow_forwardReview Conceptual Example 3 and the drawing as an aid in solving this problem. A conducting rod slides down between two frictionless vertical copper tracks at a constant speed of 3.9 m/s perpendicular to a 0.49-T magnetic field. The resistance of th rod and tracks is negligible. The rod maintains electrical contact with the tracks at all times and has a length of 1.4 m. A 1.1-Q resistor is attached between the tops of the tracks. (a) What is the mass of the rod? (b) Find the change in the gravitational potentia energy that occurs in a time of 0.26 s. (c) Find the electrical energy dissipated in the resistor in 0.26 s.arrow_forward
- A camera lens used for taking close-up photographs has a focal length of 21.5 mm. The farthest it can be placed from the film is 34.0 mm. (a) What is the closest object (in mm) that can be photographed? 58.5 mm (b) What is the magnification of this closest object? 0.581 × ×arrow_forwardGiven two particles with Q = 4.40-µC charges as shown in the figure below and a particle with charge q = 1.40 ✕ 10−18 C at the origin. (Note: Assume a reference level of potential V = 0 at r = ∞.) Three positively charged particles lie along the x-axis of the x y coordinate plane.Charge q is at the origin.Charge Q is at (0.800 m, 0).Another charge Q is at (−0.800 m, 0).(a)What is the net force (in N) exerted by the two 4.40-µC charges on the charge q? (Enter the magnitude.) N(b)What is the electric field (in N/C) at the origin due to the two 4.40-µC particles? (Enter the magnitude.) N/C(c)What is the electrical potential (in kV) at the origin due to the two 4.40-µC particles? kV(d)What If? What would be the change in electric potential energy (in J) of the system if the charge q were moved a distance d = 0.400 m closer to either of the 4.40-µC particles?arrow_forward(a) Where does an object need to be placed relative to a microscope in cm from the objective lens for its 0.500 cm focal length objective to produce a magnification of -25? (Give your answer to at least three decimal places.) 0.42 × cm (b) Where should the 5.00 cm focal length eyepiece be placed in cm behind the objective lens to produce a further fourfold (4.00) magnification? 15 × cmarrow_forward
- In a LASIK vision correction, the power of a patient's eye is increased by 3.10 D. Assuming this produces normal close vision, what was the patient's near point in m before the procedure? (The power for normal close vision is 54.0 D, and the lens-to-retina distance is 2.00 cm.) 0.98 x marrow_forwardDon't use ai to answer I will report you answerarrow_forwardA shopper standing 2.00 m from a convex security mirror sees his image with a magnification of 0.200. (Explicitly show on paper how you follow the steps in the Problem-Solving Strategy for mirrors found on page 1020. Your instructor may ask you to turn in this work.) (a) Where is his image (in m)? (Use the correct sign.) -0.4 m in front of the mirror ▾ (b) What is the focal length (in m) of the mirror? -0.5 m (c) What is its radius of curvature (in m)? -1.0 marrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Newton's First Law of Motion: Mass and Inertia; Author: Professor Dave explains;https://www.youtube.com/watch?v=1XSyyjcEHo0;License: Standard YouTube License, CC-BY