CONCEPTUAL PHYSICS LL FD
12th Edition
ISBN: 9780135745816
Author: Hewitt
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8, Problem 36RCQ
To determine
At what part of the stick do your fingers meet and the reason this always happens, no matter where you start your fingers.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
You have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says
that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to
measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small
puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…
2nd drop down is "up" or "down"
Romeo (79.0 kg) entertains Juliet (57.0 kg) by playing his guitar from the rear of their boat at rest in still water, 2.70 m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek.
(a) How far (in m) does the 81.0 kg boat move toward the shore it is facing?
m
(b) What If? If the lovers both walk toward each other and meet at the center of the boat, how far (in m) and in what direction does the boat now move?
magnitude
m
direction
---Select---
Chapter 8 Solutions
CONCEPTUAL PHYSICS LL FD
Ch. 8 - What are the units of measurement for tangential...Ch. 8 - On a rotating turntable, does tangential speed or...Ch. 8 - A tapered cup rolled on a flat surface makes a...Ch. 8 - How does the tapered rim of a wheel on a railroad...Ch. 8 - 5. What is rotational inertia, and how is it...Ch. 8 - 6. Inertia depends on mass; rotational inertia...Ch. 8 - 7. As distance increases between most of the mass...Ch. 8 - 8. Consider three axes of rotation for a pencil:...Ch. 8 - 9. Which is easier to get swinging: a baseball bat...Ch. 8 - Why does bending your legs when running enable you...
Ch. 8 - 11. Which will have the greater acceleration...Ch. 8 - 12. What does a torque tend to do to an object?
Ch. 8 - 13. What is meant by the “lever arm” of a...Ch. 8 - 14. How do clockwise and counterclockwise torques...Ch. 8 - 15. If you toss a stick into the air, it appears...Ch. 8 - Prob. 16RCQCh. 8 - 17. If you hang at rest by your hands from a...Ch. 8 - Where is the center of mass of a hollow soccer...Ch. 8 - 19. What is the relationship between the center of...Ch. 8 - 20. Why doesn’t the Leaning Tower of Pisa topple...Ch. 8 - 21. In terms of center of gravity, support base,...Ch. 8 - 22.When you whirl a can at the end of a string in...Ch. 8 - 23. Is it an inward force or an outward force that...Ch. 8 - 24. If the string that holds a whirling can in its...Ch. 8 - 25. If you are not wearing a seat belt in a car...Ch. 8 - 26. Why is centrifugal force in a rotating frame...Ch. 8 - 27. How can gravity be simulated in an orbiting...Ch. 8 - 28. Distinguish between linear momentum and...Ch. 8 - 29. What is the law of inertia for rotating...Ch. 8 - If a skater who is spinning pulls her arms in so...Ch. 8 - Contact Grandpa and tell him how you’re learning...Ch. 8 - Prob. 32RCQCh. 8 - Prob. 33RCQCh. 8 - Prob. 34RCQCh. 8 - Prob. 35RCQCh. 8 - Prob. 36RCQCh. 8 - Prob. 37RCQCh. 8 - Torque = lever arm ×...Ch. 8 - 39. Calculate the torque produced by the same 50-N...Ch. 8 - Prob. 40RCQCh. 8 - 41. Calculate the force of friction that keeps an...Ch. 8 - Angular momentum =...Ch. 8 - 43. If a persons speed doubles and all else...Ch. 8 - 44. The diameter of the base of a tapered...Ch. 8 - To tighten a bolt, you push with a force of 80 N...Ch. 8 - 46. The rock and meterstick balance at the 25-cm...Ch. 8 - In one of the photos at the beginning of this...Ch. 8 - 48. An ice puck of mass m revolves on an icy...Ch. 8 - 49. If a trapeze artist rotates once each second...Ch. 8 - A small space telescope at the end of a tether...Ch. 8 - 51. The three cups are rolled on a level surface....Ch. 8 - 52. Three types of rollers are placed on slightly...Ch. 8 - 53. Beginning from a rest position, a solid disk...Ch. 8 - 54. You hold a meterstick at one end with the same...Ch. 8 - 55. Three physics majors in good physical shape...Ch. 8 - Prob. 56RCQCh. 8 - Prob. 57RCQCh. 8 - Prob. 58RCQCh. 8 - 59. The wheels of railroad trains are tapered, a...Ch. 8 - Prob. 60RCQCh. 8 - 61. The front wheels of a racing vehicle are...Ch. 8 - 62. Which will have the greater acceleration...Ch. 8 - Prob. 63RCQCh. 8 - 64. Is the net torque changed when a partner on a...Ch. 8 - Prob. 65RCQCh. 8 - 66. When you pedal a bicycle, maximum torque is...Ch. 8 - Prob. 67RCQCh. 8 - Prob. 68RCQCh. 8 - Prob. 69RCQCh. 8 - Prob. 70RCQCh. 8 - 71. Explain why a long pole is more beneficial to...Ch. 8 - Prob. 72RCQCh. 8 - Prob. 73RCQCh. 8 - Prob. 74RCQCh. 8 - Prob. 75RCQCh. 8 - Prob. 76RCQCh. 8 - Prob. 77RCQCh. 8 - Prob. 78RCQCh. 8 - 79. The centers of gravity of the three trucks...Ch. 8 - Prob. 80RCQCh. 8 - Prob. 81RCQCh. 8 - Prob. 82RCQCh. 8 - 83. When you are in the front passenger seat of a...Ch. 8 - Prob. 84RCQCh. 8 - Prob. 85RCQCh. 8 - Prob. 86RCQCh. 8 - 87. The occupant inside a rotating space habitat...Ch. 8 - Prob. 88RCQCh. 8 - A motorcyclist is able to ride on the vertical...Ch. 8 - 90. The sketch shows a conical pendulum. The bob...Ch. 8 - Prob. 91RCQCh. 8 - Prob. 92RCQCh. 8 - Prob. 93RCQCh. 8 - 94. If all of Earth’s inhabitants moved to the...Ch. 8 - Prob. 95RCQCh. 8 - If the world’s populations moved to the North Pole...Ch. 8 - Prob. 97RCQCh. 8 - 98. Why does a typical small helicopter with a...Ch. 8 - 99. We believe that our galaxy was formed from a...Ch. 8 - Prob. 100RCQCh. 8 - Prob. 101RCQCh. 8 - Prob. 102RCQCh. 8 - Prob. 103RCQCh. 8 - 104.When a car drives off a cliff it rotates...Ch. 8 - 105. Discuss why a car noses up when accelerating...Ch. 8 - 106. Discuss how a ramp would help you to...Ch. 8 - 107. Which will roll down an incline faster: a can...Ch. 8 - 108. Why are lightweight tires preferred in...Ch. 8 - 109. A youngster who has entered a soapbox derby...Ch. 8 - 110. The spool is pulled in three ways, as shown....Ch. 8 - 111. Nobody at the playground wants to play with...Ch. 8 - 112. How can the three bricks be stacked so that...Ch. 8 - 113. A long track balanced like a seesaw supports...Ch. 8 - With respect to Diana’s finger, where is the...Ch. 8 - When a long-range cannonball is fired toward the...Ch. 8 - Most often we say that force causes acceleration....
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- 2nd image is the same for all drop downsarrow_forwardA mobile is constructed of light rods, light strings, and beach souvenirs as shown in the figure below. If m4 = 12.0 g, find values (in g) for the following. (Let d₁ = 3.20 cm, d₂ = 5.10 cm, d3 = 1.00 cm, d4 = 5.80 cm, d5 = 2.40 cm, and d6 = 3.20 cm.) d₁ d2 d3 d4 Mg d5 d6 mg MA mi (a) m₁ = g (b) m2 = (c) m3 = g g (d) What If? If m₁ accidentally falls off and shatters when it strikes the floor, the rod holding m will move to a vertical orientation so that m hangs directly below the end of the rod supporting m₂. To what values should m₂ equilibrium and be oriented horizontally? (Enter your answers in g.) m2 = m3 = and m3 be adjusted so that the other two rods will remain inarrow_forwardAn automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg . m²) of the tire about an axis perpendicular to the page through its center? 33.0 cm 30.5 cm kg. m² 16.5 cm Sidewall Treadarrow_forward
- John is pushing his daughter Rachel in a wheelbarrow when it is stopped by a brick 8.00 cm high (see the figure below). The handles make an angle of 0 = 17.5° with the ground. Due to the weight of Rachel and the wheelbarrow, a downward force of 403 N is exerted at the center of the wheel, which has a radius of 16.0 cm. Assume the brick remains fixed and does not slide along the ground. Also assume the force applied by John is directed exactly toward the center of the wheel. (Choose the positive x-axis to be pointing to the right.) i (a) What force (in N) must John apply along the handles to just start the wheel over the brick? N (b) What is the force (magnitude in kN and direction in degrees clockwise from the -x-axis) that the brick exerts on the wheel just as the wheel begins to lift over the brick? magnitude direction kN ° clockwise from the -x-axisarrow_forwardYour neighbor designs automobiles for a living. You are fascinated with her work. She is designing a new automobile and needs to determine how strong the front suspension should be. She knows of your fascination with her work and your expertise in physics, so she asks you to determine how large the normal force on the front wheels of her design automobile could become under a hard stop, when the wheels are locked and the automobile is skidding on the road. She gives you the following information. The mass of the automobile is m₂ = 1.10 × 103 kg and it can carry five passengers of average mass m = 80.0 kg. The front and rear wheels are separated by d = 4.45 m. The center of mass of the car carrying five passengers is dCM = 2.25 m behind the front wheels and hCM = 0.630 m above the roadway. A typical coefficient of kinetic friction between tires and roadway is μk = 0.840. (Caution: The braking automobile is not in an inertial reference frame. Enter the magnitude of the force in N.) Narrow_forwardThree solid, uniform boxes are aligned as in the figure below. Find the x- and y-coordinates (in m) of the center of mass of the three boxes, measured from the bottom left corner of box A. (Consider the three-box system.) HINT 0.200 m 0.280 m 0.120 m y A B C 0.350 m Origin 0.750 kg 1.00 kg 0.650 kg Х ст E m m Уст xarrow_forward
- Consider the truss shown in the figure, built from three struts attached by three pins. The truss supports a downward force of F = 1,080 N applied at the point B. Assume the mass of the truss is negligible, the pins are frictionless, and the supports at A and C are also frictionless. 01 F B nc 02 C (a) Assuming 0₁ = 26.0° and 0 2 = 51.0°, what are n and n? (Enter the magnitudes in N.) ΠΑ пс = = N N (b) The force any strut applies on a pin must be directed along the length of the strut as a force of tension or compression. What are the directions of the forces that the struts exert on the pins joining them? strut AB on joint A: ---Select--- strut AB on joint B: strut BC on joint B: strut BC on joint C: strut AC on joint A: strut AC on joint C: |---Select--- --Select--- --Select--- --Select--- |---Select--- ✓ ✓ ✓ Find the force of tension or of compression (in N) in each of the three struts. bar AB N N bar BC bar AC Narrow_forwardThe center of mass of the arm shown in the figure is at point A. Find the magnitudes (in N) of the tension force F+ and the force Fs which hold the arm in equilibrium. (Let = 22.5°.) Assume the weight of the arm is 34.8 N. N |Fsl N F 8.00 cm -29.0 cm iarrow_forwardHi, Please type the whole transcript correctly using comma and periods and as needed. Please mention the name of each scientist says. The picture of a video on YouTube has been uploaded down.arrow_forward
- The triangular coil of wire in the drawing is free to rotate about an axis that is attached along side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the magnitude of the net torque exerted on the loop by the magnetic field? 55.0° 109 B B 2.00 m.arrow_forwardThe triangular coil of wire in the drawing is free to rotate about an axis that is attached along side AC. The current in the loop is 4.64 A, and the magnetic field (parallel to the plane of the loop and side AB) is B = 2.1 T. (a) What is the magnetic moment of the loop, and (b) what is the magnitude of the net torque exerted on the loop by the magnetic field?arrow_forward12 volt battery in your car supplies 1700 Joules of energy to run the headlights during a particular nighttime drive. How much charge must have flowed through the battery to provide this much energy? Give your answer as the number of Coulombs.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What is Torque? | Physics | Extraclass.com; Author: Extraclass Official;https://www.youtube.com/watch?v=zXxrAJld9mo;License: Standard YouTube License, CC-BY