(a)
The average power of the elevator motor.
(a)
Answer to Problem 38P
The average power of the elevator motor is
Explanation of Solution
Write the expression for average power
Here,
Consider the elevator as an isolated system.
Write the expression for work done by the motor on the elevator
Simplify the above expression.
Here,
Since the direction of force and displacement is same, hence the angle
Substitute
Simplify the above equation
Substitute
Write the expression for total force when the system is moving with an acceleration.
Here,
Write the expression for total force acting on the system
Here,
Substitute
Consider the elevator as an isolated system and the motion of elevator is by force acting by motor, the elevator starts from rest when a force is applied by motor against the gravitational force of the elevator.
The gravitaional force is negative because it is in opposite to the direction of acceleration.
Write the expression for force due to gravity.
Here,
Substitute
Simplify the above equation.
Consider the motion of elevator from rest to the speed of its cruising speed.
Write the equation of motion for velocity in terms of acceleration and time
Here,
Since the initial speed is zero.
Substitute
Simplify the above equation to find the expression for
Write the equation of motion for distance travelled in terms of acceleration, time and initial speed.
Here,
Since the initial speed is zero.
Substitute
Substitute
Simplify the above equation.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Thus, the average power of the elevator motor is
(b)
The comparison between average power and the power when elevator moves with cruising speed.
(b)
Answer to Problem 38P
The instantaneous power required is
Explanation of Solution
Write the expression for instaneous power when the elevator is moving at a constant cruising speed
Simplify the above expression
Here,
Since the force and velocity are in same direction, hence the angle between
Substitute
Simplify the above equation.
Here,
Since the elevator moves at constant speed when it reaches cruising speed, hence the acceleration will be zero.
Write the expression for comparison in both powers
Here,
Since the elevator is moving at constant speed hence the acceleration is zero.
Substitute
Simplify the above equation
Conclusion:
Substitute
Substitiute
Substitute
Thus, the instantaneous power required is
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers With Modern Physics
- Lab Assignment #3 Vectors 2. Determine the magnitude and sense of the forces in cables A and B. 30° 30° 300KN 3. Determine the forces in members A and B of the following structure. 30° B 200kN Name: TA: 4. Determine the resultant of the three coplanar forces using vectors. F₁ =500N, F₂-800N, F, 900N, 0,-30°, 62-50° 30° 50° F₁ = 500N = 900N F₂ = 800Narrow_forwardLab Assignment #3 Vectors Name: TA: 1. With the equipment provided in the lab, determine the magnitude of vector A so the system is in static equilibrium. Perform the experiment as per the figure below and compare the calculated values with the numbers from the spring scale that corresponds to vector A. A Case 1: Vector B 40g Vector C 20g 0 = 30° Vector A = ? Case 2: Vector B 50g Vector C = 40g 0 = 53° Vector A ? Case 3: Vector B 50g Vector C 30g 0 = 37° Vector A = ?arrow_forwardThree point-like charges are placed at the corners of an equilateral triangle as shown in the figure. Each side of the triangle has a length of 20.0 cm, and the point (A) is located half way between q1 and q2 along the side. Find the magnitude of the electric field at point (A). Let q1=-1.30 µC, q2=-4.20µC, and q3= +4.30 µC. __________________ N/Carrow_forward
- Find the total capacitance in micro farads of the combination of capacitors shown in the figure below. 2.01 0.30 µF 2.5 µF 10 μF × HFarrow_forwardI do not understand the process to answer the second part of question b. Please help me understand how to get there!arrow_forwardRank the six combinations of electric charges on the basis of the electric force acting on 91. Define forces pointing to the right as positive and forces pointing to the left as negative. Rank in increasing order by placing the most negative on the left and the most positive on the right. To rank items as equivalent, overlap them. ▸ View Available Hint(s) [most negative 91 = +1nC 92 = +1nC 91 = -1nC 93 = +1nC 92- +1nC 93 = +1nC -1nC 92- -1nC 93- -1nC 91= +1nC 92 = +1nC 93=-1nC 91 +1nC 92=-1nC 93=-1nC 91 = +1nC 2 = −1nC 93 = +1nC The correct ranking cannot be determined. Reset Help most positivearrow_forward
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University