EBK STUDENT SOLUTIONS MANUAL WITH STUDY
10th Edition
ISBN: 9781337520386
Author: Vuille
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 35P
A rope of negligible mass is wrapped around a 225 kg solid cylinder of radius 0.400 m. The cylinder is suspended several meters off the ground with its axis oriented horizontally, and turns on that axis without friction, (a) If a 75.0-kg man takes hold of the free end of the rope and falls under the force of gravity, what is his acceleration? (b) What is the
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
L₁
D₁
L₂
D2
Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a
circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of
L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length.
a) What is the resistance of this wire?
R =
Hint
A potential difference of AV = 1.40 V is applied across the wire.
b) What is the magnitude of the current density in the thin part of the wire?
Hint
J1
=
c) What is the magnitude of the current density in the thick part of the wire?
J₂ =
d) What is the magnitude of the electric field in the thin part of the wire?
E1
=
Hint
e) What is the magnitude of the electric field in the thick part of the wire?
E2
=
please help
A cheetah spots a gazelle in the distance and begins to sprint from rest, accelerating uniformly at a rate of 8.00 m/s^2 for 5 seconds. After 5 seconds, the cheetah sees that the gazelle has escaped to safety, so it begins to decelerate uniformly at 6.00 m/s^2 until it comes to a stop.
Chapter 8 Solutions
EBK STUDENT SOLUTIONS MANUAL WITH STUDY
Ch. 8.5 - Using a screwdriver, you try to remove a screw...Ch. 8.5 - A constant net torque is applied to an object....Ch. 8.5 - The two rigid objects shown in Figure 8.21 have...Ch. 8.6 - Two spheres, one hollow and one solid, are...Ch. 8.7 - A horizontal disk with moment of inertia I1...Ch. 8.7 - If global warming continues, its likely that some...Ch. 8 - Math Review The two conditions for equilibrium...Ch. 8 - Math Review Solve the equations 12mv2+12I2=mgh and...Ch. 8 - Prob. 3WUECh. 8 - Physics Review A construction cranes cable lifts a...
Ch. 8 - A man opens a 1.00-m wide door by pushing on it...Ch. 8 - A worker applies a torque to a nut with a wrench...Ch. 8 - Prob. 7WUECh. 8 - A horizontal plank 4.00 m long and having mass...Ch. 8 - A student rides his bicycle at a constant speed of...Ch. 8 - What is- the magnitude of the angular acceleration...Ch. 8 - Prob. 11WUECh. 8 - A bowling ball of mass 7.00 kg is rolling at 3.00...Ch. 8 - A basketball player entertains the crowd by...Ch. 8 - A disk of mass m is spinning freely at 6.00 rad/s...Ch. 8 - Why cant you put your heels firmly against a wall...Ch. 8 - If you see an object rotating, is there...Ch. 8 - (a) Is it possible to calculate the torque acting...Ch. 8 - Why does a long pole help a tightrope walker stay...Ch. 8 - If you toss a textbook into the air, rotating it...Ch. 8 - Stars originate as large bodies of slowly rotating...Ch. 8 - In a tape recorder, the tape is pulled past the...Ch. 8 - (a) Give an example in which the net force acting...Ch. 8 - A cat usually lands on its feet regardless of the...Ch. 8 - A solid disk and a hoop are simultaneously...Ch. 8 - A mouse is initially at rest on a horizontal...Ch. 8 - The cars in a soapbox derby have no engines; they...Ch. 8 - The fishing pole in Figure P8.3 makes an angle of...Ch. 8 - Find the net torque on the wheel in Figure P8.4...Ch. 8 - Figure P8.4 Calculate the net torque (magnitude...Ch. 8 - A dental bracket exerts a horizontal force of 80.0...Ch. 8 - A simple pendulum consists of a small object of...Ch. 8 - Write the necessary equations of equilibrium of...Ch. 8 - Torque and the Two Conditions for Equilibrium 17....Ch. 8 - Prob. 8PCh. 8 - A cook holds a 2.00-kg carton of milk at arm's...Ch. 8 - A meter stick is found to balance at the 49.7-cm...Ch. 8 - Prob. 11PCh. 8 - A beam resting on two pivots has a length of L =...Ch. 8 - Prob. 13PCh. 8 - Prob. 14PCh. 8 - Many of the elements in horizontal-bar exercises...Ch. 8 - Prob. 16PCh. 8 - Prob. 17PCh. 8 - When a person stands on tiptoe (a strenuous...Ch. 8 - A 500.-N uniform rectangular sign 4.00 m wide and...Ch. 8 - A window washer is standing on a scaffold...Ch. 8 - A uniform plank of length 2.00 m and mass 30.0 kg...Ch. 8 - A hungry bear weighing 700. N walks out on a beam...Ch. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - Four objects are held in position at the corners...Ch. 8 - If the system shown in Figure P8.37 is set in...Ch. 8 - A large grinding wheel in the shape of a solid...Ch. 8 - An oversized yo-yo is made from two identical...Ch. 8 - A rope of negligible mass is wrapped around a 225...Ch. 8 - A potters wheel having a radius of 0.50 m and a...Ch. 8 - A model airplane with mass 0.750 kg is tethered by...Ch. 8 - A bicycle wheel has a diameter of 64.0 cm and a...Ch. 8 - A 150.-kg merry-go-round in the shape of a...Ch. 8 - An Atwoods machine consists of blocks of masses m1...Ch. 8 - An airliner lands with a speed of 50.0 m/s. Each...Ch. 8 - A car is designed to get its energy from a...Ch. 8 - A horizontal 800.-N merry-go-round of radius 1.50...Ch. 8 - Four objectsa hoop, a solid cylinder, a solid...Ch. 8 - A light rod of length = 1.00 m rotates about an...Ch. 8 - A 240-N sphere 0.20 m in radius rolls without...Ch. 8 - A solid, uniform disk of radius 0.250 m and mass...Ch. 8 - A solid uniform sphere of mass m and radius R...Ch. 8 - The top in Figure P8.55 has a moment of inertia of...Ch. 8 - A constant torque of 25.0 N m is applied to a...Ch. 8 - A 10.0-kg cylinder rolls without slipping on a...Ch. 8 - Use conservation of energy to determine the...Ch. 8 - A giant swing at an amusement park consists of a...Ch. 8 - Each of the following objects has a radius of...Ch. 8 - (a) Calculate the angular momentum of Earth that...Ch. 8 - A 0.005 00-kg bullet traveling horizontally with a...Ch. 8 - A light, rigid rod of length = 1.00 m rotates...Ch. 8 - Haileys comet moves about the Sun in an elliptical...Ch. 8 - A rigid, massless rod has three particles with...Ch. 8 - A 60.0-kg woman stands at the rim of a horizontal...Ch. 8 - A solid, horizontal cylinder of mass 10.0 kg and...Ch. 8 - A student sits on a rotating stool holding two...Ch. 8 - The puck in Figure P8.71 has a mass of 0.120 kg....Ch. 8 - A space station shaped like a giant wheel has a...Ch. 8 - A cylinder with moment of inertia I1 rotates with...Ch. 8 - A particle of mass 0.400 kg is attached to the...Ch. 8 - Additional Problems A typical propeller of a...Ch. 8 - Prob. 68APCh. 8 - Prob. 69APCh. 8 - Prob. 70APCh. 8 - A uniform ladder of length L and weight w is...Ch. 8 - Two astronauts (Fig. P8.80), each haring a mass of...Ch. 8 - S This is a symbolic version of problem 80. Two...Ch. 8 - Two window washers. Bob and Joe, are on a...Ch. 8 - A 2.35-kg uniform bar of length = 1.30 m is held...Ch. 8 - A light rod of length 2L is free to rotate in a...Ch. 8 - A light rope passes over a light, frictionless...Ch. 8 - An electric motor turns a flywheel through a drive...Ch. 8 - Prob. 79APCh. 8 - A uniform thin rod of length L and mass M is free...Ch. 8 - Prob. 81APCh. 8 - Prob. 82APCh. 8 - A war-wolf, or trebuchet, is a device used during...Ch. 8 - A string is wrapped around a uniform cylinder of...Ch. 8 - The Iron Cross When a gymnast weighing 750 N...Ch. 8 - In an emergency situation, a person with a broken...Ch. 8 - An object of mass m1 = 4.00 kg is connected by a...Ch. 8 - Prob. 88APCh. 8 - A 3.2-kg sphere is suspended by a cord that passes...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A projectile is fired with an initial speed of 40.2 m/s at an angle of 35.0 degree above the horizontal on a long flat firing range. Determine. please help and show work for them so i can understand.arrow_forwardpls helparrow_forwardJ K L The graph in the figure shows the position of an object as a function of time. The letters H-L represent particular moments of time. At which moments shown (H, I, etc.) is the speed of the object the greatest? + Position H I K Timearrow_forward
- 1. Two pendula of slightly different length oscillate next to each other. The short one oscillates with frequency 0.52 Hz and the longer one with frequency 0.50 Hz. If they start of in phase determine their phase difference after 75 s.arrow_forwardA mass is connect to a vertical revolving axle by two strings of length L, each making an angle of 45 degrees with the axle, as shown. Both the axle and mass are revolving with angular velocity w, Gravity is directed downward. The tension in the upper string is T_upper and the tension in the lower string is T_lower.Draw a clear free body diagram for mass m. Please include real forces only.Find the tensions in the upper and lower strings, T_upper and T_lowerarrow_forward2. A stone is dropped into a pool of water causing ripple to spread out. After 10 s the circumference of the ripple is 20 m. Calculate the velocity of the wave.arrow_forward
- 10. Imagine you have a system in which you have 54 grams of ice. You can melt this ice and then vaporize it all at 0 C. The melting and vaporization are done reversibly into a balloon held at a pressure of 0.250 bar. Here are some facts about water you may wish to know. The density of liquid water at 0 C is 1 g/cm³. The density of ice at 0 C is 0.917 g/cm³. The enthalpy of vaporization of liquid water is 2.496 kJ/gram and the enthalpy of fusion of solid water is 333.55 J/gram. A. How much energy does the ice absorb as heat when it melts? B. How much work is involved in melting the ice? C. What is the total change in energy for melting the ice? D. What is the enthalpy change for melting the ice? E. What is the entropy change for melting the ice? F. What is the change in Helmholtz energy for melting the ice? G. What is the change in Gibbs energy for melting the ice?arrow_forwardIn the figure Q = 5.7 nC and all other quantities are accurate to 2 significant figures. What is the magnitude of the force on the charge Q? (k = 1/4πε 0 = 8.99 × 109 N · m2/C2)arrow_forwardNow add a fourth charged particle, particle 3, with positive charge q3, fixed in the yz-plane at (0,d2,d2). What is the net force F→ on particle 0 due solely to this charge? Express your answer (a vector) using k, q0, q3, d2, i^, j^, and k^. Include only the force caused by particle 3.arrow_forward
- For a tornadoes and hurricanes, which of the following is most critical? an alert a watch a warning a predictionarrow_forwardWhen a warm front advances up and over a cold front, what is it called? front inversion stationary front cold front occlusion warm front occlusionarrow_forward1) Consider two positively charged particles, one of charge q0 (particle 0) fixed at the origin, and another of charge q1 (particle 1) fixed on the y-axis at (0,d1,0). What is the net force F→ on particle 0 due to particle 1? Express your answer (a vector) using any or all of k, q0, q1, d1, i^, j^, and k^. 2) Now add a third, negatively charged, particle, whose charge is −q2− (particle 2). Particle 2 fixed on the y-axis at position (0,d2,0). What is the new net force on particle 0, from particle 1 and particle 2? Express your answer (a vector) using any or all of k, q0, q1, q2, d1, d2, i^, j^, and k^. 3) Particle 0 experiences a repulsion from particle 1 and an attraction toward particle 2. For certain values of d1 and d2, the repulsion and attraction should balance each other, resulting in no net force. For what ratio d1/d2 is there no net force on particle 0? Express your answer in terms of any or all of the following variables: k, q0, q1, q2.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Moment of Inertia; Author: Physics with Professor Matt Anderson;https://www.youtube.com/watch?v=ZrGhUTeIlWs;License: Standard Youtube License