In the previous chapter, rocket propulsion was explained in terms of Newton’s third law. That is, the force that propels a rocket is from the exhaust gases pushing against the rocket, the reaction to the force the rocket exerts on the exhaust gases. Explain rocket propulsion in terms of momentum conservation.
To explain:The rocket propulsion in terms of momentum conservation.
Explanation of Solution
Introduction:
One of the best examples of Newton’s laws of motion is the Rocket motion. Rocket motion is the change in mass system, where mass of the system is continuously changing. Due to burning of fuel,rocket loses its mass in its flight.The exhaust gas provides acceleration to the rocket in order to attain high velocity.
Suppose rocket is projected vertically by burning fuel. Suppose m be the mass of the rocket at time t . m is the mass of the rocket which is the sum of the masses of vehicle and fuel. Velocity acquired by the rocket at time t is v . When mass of the rocket decrease due to burning of the fuel is Δm within the time interval of Δt . Due to the reduction in mass, the velocity of the rocket increases by an amount Δv . Velocity of the exhaust gasses with respect to the rocket is u .
Then the relativevelocity of exhaust gas with respect to the stationary frame on earth
( ν+u+Δν ).
Thus the law of conservation of momentum gives,
After solving we get,
Negative sign indicate the decreased in mass.
Converting these into the exact differential form by dividing by Δt and taking limit as Δv →0
Correct the above equation by considering the constant gravitational field acting in the opposite direction to the velocity vector
Integrating above equation we get velocity,
Where, Cis the constant of integration.
Applying the initial conditions we get
Where, m0 = mf + mvis the initial mass of the rocket
This is the velocity of the rocket in vertical direction.
Conclusion: By considering the momentum conservation we can derive the expression for the velocity, displacement of the rocket at any time t .
Chapter 8 Solutions
Conceptual Physics: The High School Physics Program
Additional Science Textbook Solutions
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Applications and Investigations in Earth Science (9th Edition)
Organic Chemistry (8th Edition)
Human Anatomy & Physiology (2nd Edition)
Anatomy & Physiology (6th Edition)
- The force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE DO NOT USE LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forwardNo chatgpt pls will upvotearrow_forwardThe force of the quadriceps (Fq) and force of the patellar tendon (Fp) is identical (i.e., 1000 N each). In the figure below angle in blue is Θ and the in green is half Θ (i.e., Θ/2). A) Calculate the patellar reaction force (i.e., R resultant vector is the sum of the horizontal component of the quadriceps and patellar tendon force) at the following joint angles: you need to provide a diagram showing the vector and its components for each part. a1) Θ = 160 degrees, a2) Θ = 90 degrees. NOTE: USE ONLY TRIGNOMETRIC FUNCTIONS (SIN/TAN/COS, NO LAW OF COSINES, NO COMPLICATED ALGEBRAIC EQUATIONS OR ANYTHING ELSE, ETC. Question A has 2 parts!arrow_forward
- ་ The position of a particle is described by r = (300e 0.5t) mm and 0 = (0.3t²) rad, where t is in seconds. Part A Determine the magnitude of the particle's velocity at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. v = Value Submit Request Answer Part B ? Units Determine the magnitude of the particle's acceleration at the instant t = 1.5 s. Express your answer to three significant figures and include the appropriate units. a = Value A ? Unitsarrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- A spiral transition curve is used on railroads to connect a straight portion of the track with a curved portion. (Figure 1) Part A v = v₁ft/s 600 ft y = (106) x³ If the spiral is defined by the equation y = (106)³, where x and y are in feet, determine the magnitude of the acceleration of a train engine moving with a constant speed of v₁ = 30 ft/s when it is at point x = 600 ft. Express your answer to three significant figures and include the appropriate units. ? a = Value Unitsarrow_forwardsolve and answer the problem correctly please. Thank you!!arrow_forwardSolve and answer the question correctly please. Thank you!!arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON