A cyclometer is a device mounted on a bicycle that records and displays trip information such as elapsed time, distance traveled, and average speed. Modern versions employ small magnets attached to a spoke on either the front or rear wheel and a sensor located on the front fork or rear frame. As the magnet is carried past the detector once each wheel revolution, it produces an electrical pulse that is recorded and logged by an integrated circuit in the device. The distance traveled equals the total number of revolutions multiplied by the circumference of the wheel.
(a) A typical mountain bike has a wheel diameter of 26 in. How far will a cyclist have traveled in both miles and kilometers if her cyclometer indicates that her front wheel has made 25,000 revolutions during her trip?
(b) If the cyclometer clock shows that the elapsed time for the trip was 2 hours and 40 minutes, what was the rider’s average speed during this period?
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Inquiry into Physics
Additional Science Textbook Solutions
Essentials of Human Anatomy & Physiology (12th Edition)
Fundamentals Of Thermodynamics
Applications and Investigations in Earth Science (9th Edition)
Biology: Life on Earth (11th Edition)
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning