The Essential Cosmic Perspective (7th Edition) - Standalone book
7th Edition
ISBN: 9780321928085
Author: Jeffrey O Bennett, Megan O. Donahue, Nicholas Schneider, Mark Voit
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8, Problem 21EAP
A jovian planet is discovered in a star system that is much older than our solar system. The planet has no, moons at all, but it has a system of rings as spectacular as the rings of Saturn.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The synchrotron radiation (radio waves) that astronomers first observed from Jupiter in the 1950's comes from
a. deep within Jupiter, in the metallic hydrogen layers
b. high speed electrons spirling around the planet's strong magnetic field
c. the upper-atmosphere clouds that more quickly near the equator of the planet
d. the Red Spot with its tremendous friction
According to the chart below, how do the gas giants differ from the terrestrial planets?
THE TERRESTRIAL PLANETS
THE GAS GIANTS
MERCURY
MARS
JUPITER
SATURN
URANUS
NEPTUNE
VENUS
EARTH
ROCK
ROCK
ROCK
ROCK
INNER
CORE
INNER
CORE
CORE
SIren/
Nickel
CORE
Iron/
WATER
WATER
WATER
Nickel
OUTER
CORE
OUTER
CORE
METALLIC
U HYDROGEN
METALLIC
WATER
MANTLE
Reck
HYDROGEN
MANTLE
Rock
MANTLE
Reck
CORE
SIren/
Silicates
Silicates
Silicates
Nickel
HYDROGEN
GAS
HYDROGEN
GAS
HYDROGEN
HYDROGEN
GAS
GAS
SURFACE
SURFACE
SURFACE
SURFACE
O The gas giants do not have solid surfaces.
O The gas giants have an iron core.
O The gas giants lack hydrogen gas.
O The gas giants do not contain water.
You are making a scale model to visualize the relative sizes of the planets in our solar system. The scale of the model is: 1 cm = 2000 km. The radius of Saturn is 60,000 km. At what radius will Saturn appear on your scale model?
Chapter 8 Solutions
The Essential Cosmic Perspective (7th Edition) - Standalone book
Ch. 8 - Prob. 1VSCCh. 8 - Prob. 2VSCCh. 8 - Prob. 3VSCCh. 8 - Prob. 4VSCCh. 8 - Prob. 1EAPCh. 8 - Prob. 2EAPCh. 8 - Prob. 3EAPCh. 8 - Prob. 4EAPCh. 8 - Prob. 5EAPCh. 8 - Prob. 6EAP
Ch. 8 - Prob. 7EAPCh. 8 - Describe key features of Jupiter's four Galilean...Ch. 8 - Prob. 9EAPCh. 8 - Why do we think Triton is a captu red moon? How...Ch. 8 - Briefly explain why icy moons can have active...Ch. 8 - What ar e planetary rings made of, and how do they...Ch. 8 - Prob. 13EAPCh. 8 - Saturn’s core is pockmarked with impact craters...Ch. 8 - Neptune's deep bllle color is not due to methane,...Ch. 8 - A jovian planet in another star system has a moon...Ch. 8 - A planet orbiting another star is made primarily...Ch. 8 - A previously unknown moon orbits Jupiter outside...Ch. 8 - Prob. 19EAPCh. 8 - An icy, medium-size moon orbits a jovian planet in...Ch. 8 - A jovian planet is discovered in a star system...Ch. 8 - Future observations discover rainfall of liquid...Ch. 8 - During a future mission to Uranus, scient ists...Ch. 8 - Which lists the jovian planets in order of...Ch. 8 - Why does Neptune appear blue and Jupiter red? (a)...Ch. 8 - Prob. 26EAPCh. 8 - Prob. 27EAPCh. 8 - 28. The main ingredients of most moons of the...Ch. 8 - Prob. 29EAPCh. 8 - Prob. 30EAPCh. 8 - Whid1 moon shows evidence of rainfall and erosion...Ch. 8 - Prob. 32EAPCh. 8 - Prob. 33EAPCh. 8 - 34. Europan Ocean. Scientists strong ly suspect...Ch. 8 - Breaking the Rules. As discussed in Chapter 7, the...Ch. 8 - Unanswered Question. Choose one unans wered...Ch. 8 - Comparing Jovian Moons. Roles: Scribe (collect s...Ch. 8 - The Importance of Rotation. Suppose the material...Ch. 8 - Comparing Jovian Planets. You can do comparative...Ch. 8 - Prob. 40EAPCh. 8 - Prob. 41EAPCh. 8 - Prob. 42EAPCh. 8 - Disappearing Moon. lo loses about a ton (1000...Ch. 8 - 44. Ring Particle Collisions. Each ring particle...Ch. 8 - Prometheus and Pandora. These two moons orbit...Ch. 8 - Prob. 46EAPCh. 8 - Titanic Titan. What is the ratio of Titan's mass...Ch. 8 - Saturn’s Thin Rings. Saturn's riing system is over...Ch. 8 - Jovian Planet Mission. We can study terrestrial...Ch. 8 - Prob. 50EAPCh. 8 - Prob. 51EAPCh. 8 - Prob. 52EAP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Which one of the mechanism below can NOT be responsible for providing intrinsic luminosity for planets? Gravitational settling of the hydrogen molecules. Gravitational settling of the helium atoms. Residual heat dating from the formation epoch of the planets. Decay of radio-active isotopes like uranium.arrow_forwardNearly all planets that astronomers have found orbiting other stars have been giant planets with masses more like Jupiter than Earth, and with orbits located very close to their parent stars. Does this prove that our Solar System is unique? Explain your answer.arrow_forwardH5. A star with mass 1.05 M has a luminosity of 4.49 × 1026 W and effective temperature of 5700 K. It dims to 4.42 × 1026 W every 1.39 Earth days due to a transiting exoplanet. The duration of the transit reveals that the exoplanet orbits at a distance of 0.0617 AU. Based on this information, calculate the radius of the planet (expressed in Jupiter radii) and the minimum inclination of its orbit to our line of sight. Follow up observations of the star in part reveal that a spectral feature with a rest wavelength of 656 nm is redshifted by 1.41×10−3 nm with the same period as the observed transit. Assuming a circular orbit what can be inferred about the planet’s mass (expressed in Jupiter masses)?arrow_forward
- You decide to go on an interstellar mission to explore some of the newly discovered extrasolar planets orbiting the star ROTOR. Your spacecraft arrives in the new system, in which there are five planets. ROTOR is identical to the Sun (in terms of its size, mass, age and composition). From your observations of these planets, you collect the following data: Density Average Distance from star (AU] Planet Mass Radius Albedo Temp. [C] Surf. Press. MOI Rotation [Earth = 1] (Earth = 1] [g/cm³] [Atm.] Period (Hours] Factor SIEVER EUGENIA 4.0 0.001 2.0 0.1 5.0 1.0 0.3 20 0.8 N/A 3.0 0.2 N/A 0.3 0.4 0.35 20 10 500 1000 5.0 4.0 0.5 0.8 0.4 0.7 -50 MARLENE CRILE 1.0 1.0 3.0 8.0 1,5 0.0 0.50 0.50 0.25 150 0.4 JANUS 100 12 0.1 10 -80 0.2 200 Figure 1: А Rotor 850 890 900 Wavelength (nm) A Sun В C 860 900 910 Wavelength (nm) 2414 a asarrow_forward9) An interstellar cloud fragment 0.2 light-year in diameter is rotating at a rate of one revolution per million years. It now begins to collapse. Assuming that the mass remains constant, estimate the cloud's rotation period when it has shrunk to (a) the size of the solar nebula, 100 AU across, and (b) the size of Earth's orbit, 2 AU across. (answers: 0.016 revolutions per year, and an orbital period of 62.5 years, This is 40 revolutions per year, and an orbital period of 0.025 years, or just a little over 9 days)arrow_forwardDescribe the solar nebula, and outline the sequence of events within the nebula that gave rise to the planetesimals.arrow_forward
- What produced the helium now present in the Sun’s atmosphere? In Jupiter’s atmosphere? In the Sun’s core?arrow_forwardPresent theory suggests that giant planets cannot form without condensation of water ice, which becomes vapor at the high temperatures close to a star. So how can we explain the presence of jovian-sized exoplanets closer to their star than Mercury is to our Sun?arrow_forward19 A planet is detected via the Doppler technique. The velocity change of the star is a measure of A The planet's size and density. B C D E The planet's mass and orbital distance. The planet's orbital period and eccentricity. The planet's mass and composition. The planet's size and orbital distance.arrow_forward
- helpp plzarrow_forward1arrow_forwardIf you could visit another planetary system while the planets are forming, would you expect to see the condensation sequence at work, or do you think that process was most likely unique to our Solar System? How do the properties of the extrasolar planets discovered so far affect your answer? Do you expect the most planetary system in the Universe have analogs to our Solar System’s asteroid belt and Kuiper Belt? Would all planetary systems show signs of an age of heavy bombardment? If the solar nebula hypothesis is correct, do you think there are more planets in the Universe than stars? Why or why not?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- AstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStaxAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningFoundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage Learning
Astronomy
Physics
ISBN:9781938168284
Author:Andrew Fraknoi; David Morrison; Sidney C. Wolff
Publisher:OpenStax
An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning
Horizons: Exploring the Universe (MindTap Course ...
Physics
ISBN:9781305960961
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Foundations of Astronomy (MindTap Course List)
Physics
ISBN:9781337399920
Author:Michael A. Seeds, Dana Backman
Publisher:Cengage Learning
Kepler's Three Laws Explained; Author: PhysicsHigh;https://www.youtube.com/watch?v=kyR6EO_RMKE;License: Standard YouTube License, CC-BY