
(a)
Find the initial current in each branch of the circuit using PSPICE.
(a)

Answer to Problem 1P
The initial current through resistor, inductor, and capacitor are
Explanation of Solution
Given data:
Refer to Figure given in the textbook.
The circuit parameters are given as follows:
The initial current through the inductor
The initial voltage across the capacitor
Calculation:
As the inductor, capacitor, and resistor are connected in parallel, the initial voltage across each parallel elements are the same. Therefore,
The initial current flowing through the resistor is,
Substitute 25 for
The initial current through the inductor is,
The initial current across the capacitor is,
Substitute
Conclusion:
Thus, the initial current through resistor, inductor, and capacitor are
(b)
Find the value of
(b)

Answer to Problem 1P
The value of
Explanation of Solution
Formula used:
Write the condition for over-damped response for a parallel RLC circuit as follows:
Here,
Write the condition for under-damped response for a parallel RLC circuit as follows:
Write the condition for critically damped response for a parallel RLC circuit as follows:
Write the expression for resonant radian frequency for the given circuit as follows:
Here,
Write the expression for neper frequency for the given circuit as follows:
Here,
Write the expression of required voltage response
Write the general expression for
Write the general expression for damping constant
Write the general expression to find the value of
Calculation:
Substitute 125 for
Substitute 200 m for
Substitute 800 for
The expression (2) is satisfied. Therefore, the response is the under-damped response.
Substitute 1000 for
Substitute 25 V for
Substitute 800 for
Substitute 25 for
For various values of t in the above equation the values are calculated and tabulated in Table 1 as follows.
Table 1
Time t in seconds | Voltage |
0.001 | 26.186 |
0.002 | 14.374 |
0.003 | 5.374 |
0.004 | 1.084 |
0.005 | |
0.006 | |
0.007 | |
0.008 |
PSPICE Circuit:
Draw the given circuit diagram in PSPICE as shown in Figure 1.
Provide the simulation settings as shown in Figure 2.
Now, run the simulation and the output will be as shown below.
Output:
TIME V(N00117)
0.000E+00 2.500E+01
1.000E-03 2.621E+01
2.000E-03 1.441E+01
3.000E-03 5.382E+00
4.000E-03 1.065E+00
5.000E-03 -2.932E-01
6.000E-03 -4.354E-01
7.000E-03 -2.627E-01
8.000E-03 -1.067E-01
9.000E-03 -2.581E-02
The simulated output and the calculated values in Table 1 are approximately equal and verified.
Conclusion:
Thus, the value of
(c)
Find the value of
(c)

Answer to Problem 1P
The value of
Explanation of Solution
Formula used:
Write the expression for
Write the expression for
Write the expression for
Calculation:
Substitute
Substitute
Substitute
Conclusion:
Thus, the value of
Want to see more full solutions like this?
Chapter 8 Solutions
Electric Circuits (10th Edition)
- Please solve these 3 questions in detailarrow_forward1. Please draw the root locus by hand for the following closed-loop system, where G(s) s+8 S-2 and H(s) = Find the range of K for stability Input R(s) Output C(s) KG(s) H(s) s+6 = S-2arrow_forwardThe state-space Jordan Canonical Form of the following system is: Y(s) 8-5 U(s) (+1)(+3) Select one: O a. -1 0 0 A = 0 -1 0 B: ... ... ... 0 0 C [4 1.5 1.5], D=0 b. -3 1 0 0 A = 0 -3 0 1 B ... 0 0 -1 C -4 -1.5 1.5], D=0 ○ C. -3 1 0 A = 0 -3 0 1 ,B= ... 0 0 ○ d. C [4 1.5 1.5], D=0 -3 1 0 0 A = 0 -3 0 1 , B: ... ... 0 0 -1 C [4 1.5 1.5], D=0 -4 1 If= x and (0): = then 2(t) is: -4 0 Select one: a. x2(t)=4te2t O b. x2(t) = e2t+2te2t Oc. 2(t)=-4te-21 Od. 2(t) e2-2te-2 =arrow_forward
- Three speech signals are TDM multiplexed with a high-quanty music signal. It each speech signal is sampled at 16 kHz and PCM quantized by 8 bits/sample, while the music signal is sampled at 64 kHz with the same PCM quantizer. 1. Draw the block diagram of this TDM. 2. Calculate the output bit rate of this TDM.arrow_forward3- For the network below determine the value of R for maximum power to R (use Thevenin equivalent) and determine the value of maximum power R₁ 1.2Ω E + 12 V I D 10 A R₂60 6Ω Rarrow_forwardPlease solve this problem in detail to understandarrow_forward
- Q3: (40 Marks) Single phase full bridge voltage source inverter has an RLC load with R-1002, L-31.5mH and C=112µF. The inverter frequency is 60Hz and de input voltage is 220V. (a) Express the instantaneous load current in Fourier series to third harmonic. (b) Calculate the RMS load current at the fundamental frequency (n=1). (c) Calculate the load power due to fundamental component (n=1).arrow_forward12.3 Express each of the waveforms in Fig. P12.3 (on page 667) in terms of step functions and then determine its Laplace transform. [Recall that the ramp function is related to the step function by r(t − T) = (t − T) u(t − T).] Assume that all waveforms are zero for t<0. - - -arrow_forwardEvaluate each of the following integraarrow_forward
- With the aid of suitable diagrams, describe the benefits that antenna arrays have over singleelement antennas, with their applicationsarrow_forwardExplain what is meant by an electric dipole antenna, sketch its radiation pattern, state itsdirectivity and describe its main applicationsarrow_forwardEstimate the length required for a half-waveelectric dipole antenna for transmitting/receiving EM waves at 800 MHz (this is in the UHFbandwidth of 470 to 860 MHz, used for UK TV transmissions).arrow_forward
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,





