
Electric Circuits (10th Edition)
10th Edition
ISBN: 9780133760033
Author: James W. Nilsson, Susan Riedel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 18P
(a)
To determine
Change the resistance for the designed circuit in Problem 8.5(a) in order to attain the underdamped response and find the roots of the characteristic equation with the new resistance.
(b)
To determine
Change the resistance for the designed circuit in Problem 8.5(a) in order to attain the overdamped response and find the roots of the characteristic equation with the new resistance.
The roots of the characteristic equation with the new resistance are
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
For the system shown in figure below, the per unit values of different quantities are
E-1.2, V 1, X X2-0.4. Xa-0.2
Determine whether the system is stable for a sustained fault.
The fault is cleared at 8-60°. Is the system stable? If so find the maximum
rotor swing.
Find the critical clearing angle.
E25
G
X'd
08
CB
X2
F
CB
V28
Infinite
bus
17 For the circuit shown in Fig. 2.20, the transistors are identical and have the following
parameters: hfe = 50, hie 1.1K, hre = 0, and hoe = 0. Calculate Auf, Rif and Rof.
25 V
{Ans #45.4; 112 KM; 129
150k
47k
www
www
+11
www
10k
6
4.7k
50μF
Rif
R₂1000
w
4.7k
47k
Vo
Q2
33k
4.7k
ww
50µF
5μF
4.7k
1
R₁
Rof
For the circuit shown in Fig. 2.18, he =1.1 K2, hfe =50. Find Avf, Rif and Rof.
{ Ans: -3.2; 1935; X2807.
Ans:-3-2;193;728. Vcc
Rs=10kQ
RF = 40kQ
Re=4KQ
-ov
Vs
Fig. 2.18 Circuit for Q5.
Chapter 8 Solutions
Electric Circuits (10th Edition)
Ch. 8.1 - The resistance and inductance of the circuit in...Ch. 8.2 - Use the integral relationship between iL and v to...Ch. 8.2 - Prob. 3APCh. 8.2 - Prob. 4APCh. 8.2 - Prob. 5APCh. 8.3 - Prob. 6APCh. 8.4 - The switch in the circuit shown has been in...Ch. 8.4 - Prob. 8APCh. 8 - Prob. 1PCh. 8 - Prob. 2P
Ch. 8 - The resistance in Problem 8.1 is decreased to80 Ω...Ch. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - The natural voltage response of the circuit in...Ch. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - The natural response for the circuit shown in Fig....Ch. 8 - Prob. 10PCh. 8 - The two switches in the circuit seen in Fig.P8.11...Ch. 8 - The resistor in the circuit of Fig. P8.11 is...Ch. 8 - The resistor in the circuit of Fig.P8.11 is...Ch. 8 - The switch in the circuit of Fig. P8.17 has been...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - Design a parallel RLC circuit (see Fig. 8.1) using...Ch. 8 - Prob. 18PCh. 8 - Prob. 19PCh. 8 - Find υ(t) for t ≥ 0 in the circuit in Problem 8.19...Ch. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - The initial value of the voltage υ in the circuit...Ch. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - Prob. 30PCh. 8 - The switch in the circuit in Fig. P8.31 has been...Ch. 8 - Prob. 32PCh. 8 - There is no energy stored in the circuit in Fig....Ch. 8 - For the circuit in Fig. P8.30, find υo for t ≥...Ch. 8 - The switch in the circuit in Fig. P8.36 has been...Ch. 8 - Prob. 36PCh. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Find the voltage across the 80 nF capacitor for...Ch. 8 - The initial energy stored in the 31.25 nF...Ch. 8 - In the circuit in Fig. P8.42, the resistor is...Ch. 8 - Design a series RLC circuit (see Fig. 8.3) using...Ch. 8 - Change the resistance for the circuit you designed...Ch. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - The switch in the circuit shown in Fig. P8.48 has...Ch. 8 - The switch in the circuit in Fig. P8.48 has been...Ch. 8 - The initial energy stored in the circuit in Fig....Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - Prob. 52PCh. 8 - The two switches in the circuit seen in Fig. P8.53...Ch. 8 - Prob. 55PCh. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Derive the differential equation that relates the...Ch. 8 - The voltage signal of Fig. P8.63(a) is applied to...Ch. 8 - The circuit in Fig. P8.63 (b) is modified by...Ch. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- The circuit of Fig. 2.16 is to have Af=-1mA/V, D=1+ BA = 50, a voltage gain of -4, Rs =1KQ, and hfe = 150. Find RL, Re, Rif and Rof.. Vcc www RL OV Ans: 4 kor; 98053150 KS;∞. { An Re Fig. 2.16 Circuit for Q3.arrow_forwardDuring the lab you will design and measure a differential amplifier, made with an opamp. inside generator R5 ww 500 V1 0.1Vpk 1kHz 0° R6 w 50Ω R1 ww 10ΚΩ VCC C1 balanced wire R3 w 15.0V signal+ 100nF U1A TL082CP ground 2 signal- R4 w C2 Question5: Calculate R3 and R4 for a 20dB. 100nF VEE -15.0V R2 ww 10ΚΩarrow_forwardnot use ai pleasearrow_forward
- 3. Consider the system described by the transfer function Gp(s) polynomial controller to satisfy the below specifications: 1) The settling time is t = 1 second, 2) 0.1% peak overshoot, 3) and zero steady-state error for a ramp input. The sampling period is T = 0.01 second. 1 = Design a discrete-time s(s+5)*arrow_forwardProblem 2 Does there exist a value a that makes the two systems S₁ and S₂ equal? If so, what is this value ? If not, explain why. S₁ x[n] x[n] D D -2 → host 回洄 S with h[m] " 999. усиз -1012345 harrow_forwardplease not use any aiarrow_forward
- Problem 2 Does there exist a value a that makes the two systems S₁ and S₂ equal? If so, what is this value ? If not, explain why. S₁ x[n] x[n] D D -2 → host 回洄 S with h[m] " 999. усиз -1012345 harrow_forwardSolve only no 8, Don't use chatgpt or any , only expertarrow_forwardI need help in creating a matlab code to find the currents USING MARTIXS AND INVERSE to find the currentarrow_forward
- Question 2 A transistor is used as a switch and the waveforms are shown in Figure 2. The parameters are Vcc = 225 V, VBE(sat) = 3 V, IB = 8 A, VCE(sat) = 2 V, Ics = 90 A, td = 0.5 µs, tr = 1 µs, ts = 3 µs, tƒ = 2 μs, and f 10 kHz. The duty cycle is k 50%. The collector- emitter leakage current is ICEO = 2 mA. Determine the power loss due to the collector current: = = = (a) during turn-on ton = td + tr VCE Vcc (b) during conduction period tn V CE(sat) 0 toff" ton Ics 0.9 Ics (c) during turn-off toff = ts + tf (d) during off-time tot (e) the total average power losses PT ICEO 0 IBS 0 Figure 2 V BE(sat) 0 主 * td tr In Is If to iB VBE T= 1/fsarrow_forwardQuestion 1: The beta (B) of the bipolar transistor shown in Figure 1 varies from 12 to 60. The load resistance is Rc = 5. The dc supply voltage is VCC = 40 V and the input voltage to the base circuit is VB = 5 V. If VCE(sat) = 1.2 V, VBE(sat) = 1.6 V, and RB = 0.8 2, calculate: (a) the overdrive factor ODF. (b) the forced ẞ (c) the power loss in the transistor PT. IB VB RB + V BE RC Vcc' Ic + IE Figure 1 VCEarrow_forwardI need help in creating a matlab code to find the currentsarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
02 - Sinusoidal AC Voltage Sources in Circuits, Part 1; Author: Math and Science;https://www.youtube.com/watch?v=8zMiIHVMfaw;License: Standard Youtube License