![CHEMISTRY:CENTRAL SCIENCE-W/MOD.ACCESS](https://compass-isbn-assets.s3.amazonaws.com/isbn_cover_images/9780134809694/9780134809694_largeCoverImage.gif)
Concept explainers
Interpretation:
The facts related to the resonance stabilization of benzene, heat of hydrogenation and fuel value of benzene and acetylene are to be determined; also the experiment to prove the existence of resonance in cyclooctatetraene is to be determined.
Concept Introduction:
The enthalpy change of the combustion reaction is calculated by the difference of sum of the enthalpy change of products and reactants.
(a)
To determine:
The comparison of heat of hydrogenation of benzene and acetylene and the greater fuel value out of
![Check Mark](/static/check-mark.png)
Explanation of Solution
The heat of hydrogenation of acetylene is
The heat of hydrogenation of benzene is
The fuel value of acetylene is higher than benzene which is consistent with the stability of benzene.
Step 1:
To determine:
The heat of hydrogenation and fuel value of
![Check Mark](/static/check-mark.png)
Answer to Problem 1DE
Solution:
The heat of hydrogenation of acetylene is
Explanation of Solution
The balanced chemical equation for the combustion of acetylene is,
The enthalpy change of the given reaction is calculated by the formula,
Substitute the values of
The fuel value of acetylene is calculated by dividing its standard enthalpy change by the mass.
Step 2:
To determine:
The heat of hydrogenation and fuel value of
![Check Mark](/static/check-mark.png)
Answer to Problem 1DE
Solution:
The heat of hydrogenation of benzene is
Explanation of Solution
The balanced chemical equation for the combustion of benzene is,
The enthalpy change of the given reaction is calculated by the formula,
Substitute the values of
The fuel value of benzene is calculated by dividing its standard enthalpy change by the mass.
Since, the fuel value of benzene is less than that of acetylene. Therefore, benzene ring is especially stable and not gets easily oxidized. Thus, the calculations of heat of hydrogenation and fuel value are consistent with the extra stabilization of benzene.
The heat of hydrogenation of acetylene is
The heat of hydrogenation of benzene is
The fuel value of acetylene is higher than benzene which is consistent with the stability of benzene.
(b)
To determine:
The heat of hydrogenation and fuel value of toluene.
![Check Mark](/static/check-mark.png)
Answer to Problem 1DE
Solution:
The heat of hydrogenation of toluene is
Explanation of Solution
The balanced chemical equation for the combustion of benzene is,
The enthalpy change of the given reaction is calculated by the formula,
Substitute the values of
The fuel value of benzene is calculated by dividing its standard enthalpy change by the mass.
The heat of hydrogenation of toluene is
(c)
To determine:
The explanation of stabilization of benzene by using the given values of heat of hydrogenation.
![Check Mark](/static/check-mark.png)
Answer to Problem 1DE
Solution:
The heat of hydrogenation for benzene is more than cyclohexane because benzene is more stable and it requires more energy to break its bonds.
Explanation of Solution
Given
The heat of hydrogenation of benzene to make cyclohexane is
The heat of hydrogenation of cyclohexene to make cyclohexane is
The heat of hydrogenation is the energy required to break the carbon-hydrogen bonds in the molecule. More is the heat of hydrogenation; more is the stability of the molecule. Since, the heat of hydrogenation of benzene is more than that of the cyclohexene. Therefore, the benzene is more stable than that of the cyclohexene.
The heat of hydrogenation for benzene is more than cyclohexane because benzene is more stable and it requires more energy to break its bonds.
(d)
To determine:
The explanation of resonance and stability of benzene on the basis of bond lengths and bond angles.
![Check Mark](/static/check-mark.png)
Answer to Problem 1DE
Solution:
The bond lengths and bond angle in benzene are all equal which confirms the existence of phenomenon of resonance in the molecule.
Explanation of Solution
The pi electrons present in the benzene ring is delocalized among all the carbon atoms of the ring. Due to this the bond lengths and bond angles of all carbon-carbon bonds are equal which proves the delocalized bonding in the ring. Therefore, the bond lengths and bond angles are sufficient to decide the existence of resonance and stability in the structure.
The bond lengths and bond angle in benzene are all equal which confirms the existence of phenomenon of resonance in the molecule.
(e)
To determine:
The experiment to prove the existence of resonance in cyclo octatetraene.
![Check Mark](/static/check-mark.png)
Answer to Problem 1DE
Solution:
The NMR spectrum of cyclo octatetraene proves that this molecule does not exhibit the phenomenon of resonance.
Explanation of Solution
The NMR spectrum of the given sample is the measure of number of hydrogen nuclei in the molecule. The number of peaks present in the NMR spectrum decides the types of nucleus present in the structure. The given structure of cyclooctatetraene contains two types of protons present in the structure having two different bond lengths. Therefore, the pheneomenon of resonance does not exhibit in this structure.
The NMR spectrum of cyclooctatetraene proves that this molecule does not exhibit the phenomenon of resonance.
Want to see more full solutions like this?
Chapter 8 Solutions
CHEMISTRY:CENTRAL SCIENCE-W/MOD.ACCESS
- * How many milliliters of 97.5(±0.5) wt% H2SO4 with a density of 1.84(±0.01) g/mL will you need to prepare 2.000 L of 0.110 M H2SO4? * If the uncertainty in delivering H2SO4 is ±0.01 mL, calculate the absolute uncertainty in the molarity (0.110 M). Assume there is negligible uncertainty in the formula mass of NaOH and in the final volume (2.000 L) and assume random error.arrow_forwardYou are tasked with creating a calibration curve for the absorbance of cobalt solutions of various concentrations. You must prepare 5 standards with concentrations between 1.00 mg/L and 10.0 mg/L Co2+. You have a stock solution with a concentration of 40 mg/L Co2+ and all the standard lab glassware including transfer pipets and flasks. Explain how you would make your 5 standard solutions of various concentrations, including what glassware you would use to measure and prepare each solution.arrow_forwardPredict the product and write the mechanism. CH3-CH=CH-CH2-CH3 + NBS- hv CCl4arrow_forward
- How exactly is carbon disulfide used in industry? Specifically, where does it come in during rubber or textile production and what is the chemical processes?arrow_forwardA researcher has developed a new analytical method to determine the percent by mass iron in solids. To test the new method, the researcher purchases a standard reference material sample that is 2.85% iron by mass. Analysis of the iron standard with the new method returns values of 2.75%, 2.89%, 2.77%, 2.81%, and 2.87%. Does the new method produce a result that is significantly different from the standard value at the 95% confidence level?arrow_forwardCreate a drawing of an aceral with at least 2 isopropoxy groups, and a total of 11 carbon atomsarrow_forward
- 4. Predict the major product(s) for each of the following reactions. HBr (1 equiv.) peroxide, A a. b. NBS, peroxide, Aarrow_forwardIn addition to the separation techniques used in this lab (magnetism, evaporation, and filtering), there are other commonly used separation techniques. Some of these techniques are:Distillation – this process is used to separate components that have significantly different boiling points. The solution is heated and the lower boiling point substance is vaporized first. The vapor can be collected and condensed and the component recovered as a pure liquid. If the temperature of the mixture is then raised, the next higher boiling component will come off and be collected. Eventually only non-volatile components will be left in the original solution.Centrifugation – a centrifuge will separate mixtures based on their mass. The mixture is placed in a centrifuge tube which is then spun at a high speed. Heavier components will settle at the bottom of the tube while lighter components will be at the top. This is the technique used to separate red blood cells from blood plasma.Sieving – this is…arrow_forwardBriefly describe a eutectic system.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781259911156/9781259911156_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305577213/9781305577213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078021558/9780078021558_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079373/9781305079373_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781118431221/9781118431221_smallCoverImage.gif)