Interpretation:
The structure and properties that arise from the respective structures of diamond and graphite should be explained.
Concept introduction:
- The different physical forms in which an element can exist are termed as allotropes.
- Carbon exists in 3 forms: graphite, diamond and fullerene (C60).
- In each of the three forms, carbon atoms are linked together via covalent bonds. However, they differ in the arrangement of C-C bonds and the shape of the molecules.
Answer to Problem 1CO
Solution:
Diamond forms a three dimensional lattice like structure, whereas graphite forms two dimensional sheet like structures.
Explanation of Solution
In the structure of diamond each carbon atom is linked to four other carbon atoms forming a three dimensional network of strong covalent bonds. As a result diamond, is one of the hardest elements on earth. It has a high density and a high melting point.
In graphite, each carbon atom is linked to three other carbon atoms resulting in the formation of sheet like structures that are weakly held by vander-waals forces. In contrast to diamond, graphite is a soft material with low density and a low melting point.
Conclusion:
Hence, a difference in the arrangement of the carbon atoms imparts different properties to diamond and graphite.
Want to see more full solutions like this?
Chapter 8 Solutions
Bundle: Chemistry for Engineering Students, 3rd, Loose-Leaf + OWLv2 with Quick Prep and Student Solutions Manual 24-Months Printed Access Card
- Pleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forwardThe Ksp for lead iodide ( Pbl₂) is 1.4 × 10-8. Calculate the solubility of lead iodide in each of the following. a. water Solubility = mol/L b. 0.17 M Pb(NO3)2 Solubility = c. 0.017 M NaI mol/L Solubility = mol/Larrow_forwardPleasssssseeee solve this question in cheeemsirty, thankss sirarrow_forward
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStaxPhysical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,