(a)
An experimental procedure to determine the velocities of the carts before and after the collision and the equipment used in it.
![Check Mark](/static/check-mark.png)
Answer to Problem 18TP
The velocities of the carts before and after the collision can be determined by measuring the time taken by the carts to cover a distance.
Explanation of Solution
Introduction:
An experiment can be performed in which the two carts will be placed on a straight horizontal track. One of the carts will be kept at rest while the other will be pushed towards it to cause collision between the carts.
The additional equipment required to perform this experiment are a measuring tape to measure the distance travelled by the carts and a stopwatch to determine the time interval.
The expression for the average velocity in terms of distance and time is given as
Measure the distance between the carts before pushing the first cart towards the second cart. Then push the first cart towards the second cart which is at rest and note the time taken by the first cart to hit the second cart using a stopwatch.
Substitute the obtained values in the above expression to calculate the average velocity of the first cart before the collision. The velocity of the second cart before the collision will be zero because it is at rest.
To calculate the velocities of the carts after the collision, repeat the same procedure. Measure the distance travelled by the carts and the time taken to travel the distance. After the collision, the carts get stick together and therefore, there velocities after the collision will be equal.
After the calculation of the velocities of the carts before and after the collision, the expression for the conservation of momentum can be used to determine the mass of the second cart.
Here,
The combined mass is given by
So, the expression to calculate the mass of cart
Conclusion:
The velocities of the carts before and after the collision can be determined by measuring the distance travelled by the carts and the time taken to cover the distance.
(b)
The factor which affects the uncertainty in the measurement of the mass of cart
![Check Mark](/static/check-mark.png)
Answer to Problem 18TP
The errors in the measurements taken before and after the collision will equally affect the uncertainty in the calculation of the mass of cart
Explanation of Solution
The mass of the cart
The expression includes the values of the velocities of the carts calculated before the collision and the values of the velocities of the carts calculated after the collision. The velocities after and before the collision are calculated using same procedure. Therefore, the errors in the measurements taken before and after the collision will equally affect the uncertainty in the calculation of the mass of cart
Conclusion:
The errors in the measurements taken before and after the collision will equally affect the uncertainty in the calculation of the mass of cart
(c)
Themass of cart
![Check Mark](/static/check-mark.png)
Answer to Problem 18TP
The mass of cart
Explanation of Solution
Given:
The mass of cart
Formula used:
The conservation of momentum for combined bodies is given by
Here,
The combined mass is given by
The velocity is given by
Calculation:
The initial velocity of cart
The combined velocity after the collision is calculated as
The mass of the cart
Conclusion:
The mass of cart
(d)
Whether thevalues of initially measured physical quantities affect the loss in energy during inelastic collision.
![Check Mark](/static/check-mark.png)
Explanation of Solution
Introduction:
In an inelastic collision, a part of kinetic energy gets lost into the other forms of energy after the collision. Therefore, the kinetic energy does not remain conserved in an inelastic collision. The amount of energy lost after the collision can be simply determined by measuring the difference in the kinetic energy of the body before and after the collision. To measure the kinetic energy of a body, it is required to have the values of the mass and the velocity of the body.
The expression for the energy losses during the inelastic collision is given by
It can be seen from the above expression that the values of the velocities of both the carts before the collision affects the magnitude of energy losses during the collision.
Conclusion:
The initially measured physical quantities will affect the amount of energy lost during the inelastic collision on the basis of the conservation of the kinetic energy.
Want to see more full solutions like this?
Chapter 8 Solutions
College Physics
- 4.) The diagram shows the electric field lines of a positively charged conducting sphere of radius R and charge Q. A B Points A and B are located on the same field line. A proton is placed at A and released from rest. The magnitude of the work done by the electric field in moving the proton from A to B is 1.7×10-16 J. Point A is at a distance of 5.0×10-2m from the centre of the sphere. Point B is at a distance of 1.0×10-1 m from the centre of the sphere. (a) Explain why the electric potential decreases from A to B. [2] (b) Draw, on the axes, the variation of electric potential V with distance r from the centre of the sphere. R [2] (c(i)) Calculate the electric potential difference between points A and B. [1] (c(ii)) Determine the charge Q of the sphere. [2] (d) The concept of potential is also used in the context of gravitational fields. Suggest why scientists developed a common terminology to describe different types of fields. [1]arrow_forward3.) The graph shows how current I varies with potential difference V across a component X. 904 80- 70- 60- 50- I/MA 40- 30- 20- 10- 0+ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIV Component X and a cell of negligible internal resistance are placed in a circuit. A variable resistor R is connected in series with component X. The ammeter reads 20mA. 4.0V 4.0V Component X and the cell are now placed in a potential divider circuit. (a) Outline why component X is considered non-ohmic. [1] (b(i)) Determine the resistance of the variable resistor. [3] (b(ii)) Calculate the power dissipated in the circuit. [1] (c(i)) State the range of current that the ammeter can measure as the slider S of the potential divider is moved from Q to P. [1] (c(ii)) Describe, by reference to your answer for (c)(i), the advantage of the potential divider arrangement over the arrangement in (b).arrow_forward1.) Two long parallel current-carrying wires P and Q are separated by 0.10 m. The current in wire P is 5.0 A. The magnetic force on a length of 0.50 m of wire P due to the current in wire Q is 2.0 × 10-s N. (a) State and explain the magnitude of the force on a length of 0.50 m of wire Q due to the current in P. [2] (b) Calculate the current in wire Q. [2] (c) Another current-carrying wire R is placed parallel to wires P and Q and halfway between them as shown. wire P wire R wire Q 0.05 m 0.05 m The net magnetic force on wire Q is now zero. (c.i) State the direction of the current in R, relative to the current in P.[1] (c.ii) Deduce the current in R. [2]arrow_forward
- 2.) A 50.0 resistor is connected to a cell of emf 3.00 V. The voltmeter and the ammeter in the circuit are ideal. V A 50.00 (a) The current in the ammeter is 59.0 mA. Calculate the internal resistance of the cell. The circuit is changed by connecting another resistor R in parallel to the 50.0 resistor. V A 50.00 R (b) Explain the effect of this change on R is made of a resistive wire of uniform cross-sectional area 3.1 × 10-8 m², resistivity 4.9 × 10-70m and length L. The resistance of R is given by the equation R = KL where k is a constant. (b.i) the reading of the ammeter. [2] (b.ii) the reading of the voltmeter. [2] (c) Calculate k. State an appropriate unit for your answer. [3] [2]arrow_forwardNo chatgpt pls will upvotearrow_forwardNo chatgpt pls will upvotearrow_forward
- A rod 12.0 cm long is uniformly charged and has a total charge of -20.0 μc. Determine the magnitude and direction of the electric field along the axis of the rod at a point 32.0 cm from its center. 361000 ☑ magnitude What is the general expression for the electric field along the axis of a uniform rod? N/C direction toward the rodarrow_forwardA certain brand of freezer is advertised to use 730 kW h of energy per year. Part A Assuming the freezer operates for 5 hours each day, how much power does it require while operating? Express your answer in watts. ΜΕ ΑΣΦ ? P Submit Request Answer Part B W If the freezer keeps its interior at a temperature of -6.0° C in a 20.0° C room, what is its theoretical maximum performance coefficient? Enter your answer numerically. K = ΜΕ ΑΣΦ Submit Request Answer Part C What is the theoretical maximum amount of ice this freezer could make in an hour, starting with water at 20.0°C? Express your answer in kilograms. m = Ο ΑΣΦ kgarrow_forwardDescribe the development of rational choice theory in sociology. Please includearrow_forward
- A-E pleasearrow_forwardA 11.8 L gas tank containing 3.90 moles of ideal He gas at 26.0°C is placed inside a completely evacuated insulated bell jar of volume 39.0 L .A small hole in the tank allows the He to leak out into the jar until the gas reaches a final equilibrium state with no more leakage. Part A What is the change in entropy of this system due to the leaking of the gas? ■ ΜΕ ΑΣΦ AS = ? J/K Submit Request Answer Part B Is the process reversible or irreversible?arrow_forwardA-E pleasearrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133939146/9781133939146_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133104261/9781133104261_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780078807213/9780078807213_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168277/9781938168277_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534408961/9780534408961_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168000/9781938168000_smallCoverImage.gif)