Electric Circuits Plus Mastering Engineering with Pearson eText 2.0 - Access Card Package (11th Edition) (What's New in Engineering)
11th Edition
ISBN: 9780134814117
Author: NILSSON, James W., Riedel, Susan
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 18P
To determine
Find the expression of
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
control system
G = X^4+X+1
M = X^9+X^8+X^6+X^4+X^3+X+1
2.52. The step response s(t) of a continuous-time LTI system is given by
s(1) = [cos wol ]u(1)
Find the impulse response h(t) of the system.
Ans. h(t)=8(1) - wo[sin w₁t]u(t)
Chapter 8 Solutions
Electric Circuits Plus Mastering Engineering with Pearson eText 2.0 - Access Card Package (11th Edition) (What's New in Engineering)
Ch. 8.1 - The resistance and inductance of the circuit in...Ch. 8.2 - Use the integral relationship between iL and v to...Ch. 8.2 - Prob. 3APCh. 8.2 - Prob. 4APCh. 8.2 - Prob. 5APCh. 8.3 - Prob. 6APCh. 8.4 - Prob. 7APCh. 8.4 - Prob. 8APCh. 8.4 - Repeat Assessment Problems 8.7 and 8.8 if the 80 Ω...Ch. 8 - The resistance, inductance, and capacitance in a...
Ch. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - The natural response for the circuit shown in Fig....Ch. 8 - The natural voltage response of the circuit in...Ch. 8 - The voltage response for the circuit in Fig. 8.1...Ch. 8 - Prob. 10PCh. 8 - Design a parallel RLC circuit (see Fig. 8.1) using...Ch. 8 - Prob. 12PCh. 8 - The initial value of the voltage υ in the circuit...Ch. 8 - Prob. 14PCh. 8 - The resistor in the circuit of Fig. P8.14 is...Ch. 8 - Prob. 16PCh. 8 - The switch in the circuit of Fig. P8.17 has been...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - The switch in the circuit in Fig. P8.27 has been...Ch. 8 - For the circuit in Fig. P8.27, find υo for t ≥...Ch. 8 - The switch in the circuit in Fig. P8.29 has been...Ch. 8 - There is no energy stored in the circuit in Fig....Ch. 8 - For the circuit in Fig. P8.30, find υo for t ≥...Ch. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Switches 1 and 2 in the circuit in Fig. P8.35 are...Ch. 8 - The switch in the circuit in Fig. P8.36 has been...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - In the circuit in Fig. P8.39, the resistor is...Ch. 8 - The initial energy stored in the 50 nF capacitor...Ch. 8 - Prob. 41PCh. 8 - Find the voltage across the 80 nF capacitor for...Ch. 8 - Design a series RLC circuit (see Fig. 8.3) using...Ch. 8 - Change the resistance for the circuit you designed...Ch. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - The switch in the circuit shown in Fig. P8.48 has...Ch. 8 - Prob. 49PCh. 8 - The initial energy stored in the circuit in Fig....Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - The two switches in the circuit seen in Fig. P8.53...Ch. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - The circuit parameters in the circuit of Fig....Ch. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Derive the differential equation that relates the...Ch. 8 - The voltage signal of Fig. P8.63(a) is applied to...Ch. 8 - The circuit in Fig. P8.63 (b) is modified by...Ch. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.48. Show that if y(t) = x(t)* h(t), then y' (t) = x' (1) * h(t) = x(t) * h'(t) Hint: Differentiate Eqs. (2.6) and (2.10) with respect to t. 2.49. Show that x(1) * 8'(t) = x(t) Hint: Use the result from Prob. 2.48 and Eq. (2.58).arrow_forward2.47. Compute the convolution sum y[n] = x[n]+h[n] of the following pairs of sequences: (a) x[n] = u[n], h[n] = 2"u[n] (b) x[n]=u[n]-u[n-N], h[n]=a"u[n], 0 < a <1 (c) x[n]=()"u[n], h[n] = 8[n] - 8[n-1]arrow_forward2.55. Consider a discrete-time LTI system with impulse response h[n] given by Is this system memoryless? Ans. No, the system has memory. h[n] = [n-1]arrow_forward
- "4. The load impedance connected to the secondary winding of the ideal transformer in the following circuit consists of a resistance of 237.5m2 in series with an inductor of 125µH. If the sinusoidal voltage source v, is generating the voltage 2500 cos(400t) V, calculate the steady-state equations for: (a) 21. (b) v1. (c) i₂, and (d) v2." 08 0,255 mH 237,5 m2 10:1 01 - Ideal 02 125 pharrow_forward2.55. Consider a discrete-time LTI system with impulse response h[n] given by h[n]=8[n-1] Is this system memoryless? Ans. No, the system has memory.arrow_forward"1. Formulate the matrix system to find the voltages and currents of the transformer in the following circuit. Hint: Use KVL (Kirchhoff's Voltage Law) in each winding of the transformer and use the voltage and current relationships." RT www pNp Ns Rc Vp idealarrow_forward
- 2.62. Write the input-output equation for the system shown in Fig. 2-34. Ans. 2y[n]-y[n-1] = 4x[n] + 2x[n-1] x[n] Unit delay Fig. 2-34 y[n] Σ + +arrow_forward(ii) Register B hold the data byte 28H and accumulator hold 97H. Show the contents of the registers B, C and accumulator after the execution of the following instructions. MOV A, B MOV C, Aarrow_forward2.53. The system shown in Fig. 2-31 is formed by connection two systems in parallel. The impulse responses of the systems are given by h₁(t)=eu(1) and h₂(1) = 2e'u(1) (a) Find the impulse response h(t) of the overall system. (b) Is the overall system stable? Ans. (a) h(t) = (e-21 + 2e')u(t) (b) Yes x(t) h₁(1) + h₂(1) Fig. 2-31 + y(t) Σarrow_forward
- 2.54. Consider an integrator whose input x(t) and output y(t) are related by y(t) = '_x(T) dT (a) Find the impulse response h(t) of the integrator. (b) Is the integrator stable? Ans. (a) h(t) = u(t) (b) Noarrow_forward2.61. Is the system described by the differential equation linear? Ans. No, it is nonlinear. dy(t) +5y(1)+2=x(1) dtarrow_forward2.64. Consider a discrete-time system whose input x[n] and output y[n] are related by y[n] y[n-1] = x[n] with y[-1] = 0. Find the output y[n] for the following inputs: (a) x[n]=()u[n]; (b) x[n]=()u[n] Ans. (a) y[n] = 6[()*+' - (¹)" + ¹]u[n] (b) y[n] = (n+1X)"u[n]arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Inductors Explained - The basics how inductors work working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=KSylo01n5FY;License: Standard Youtube License