Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
9th Edition
ISBN: 9781305372337
Author: Raymond A. Serway | John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 17P
(a)
To determine
To determine: The mechanical energy transformed to internal energy of particle hoop floor system in one revolution.
(b)
To determine
To determine: The total number of revolutions the particle makes before stopping.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Physics For Scientists And Engineers With Modern Physics, 9th Edition, The Ohio State University
Ch. 8.1 - Consider a block sliding over a horizontal surface...Ch. 8.2 - A rock of mass m is dropped to the ground from a...Ch. 8.2 - Three identical balls are thrown from the top of a...Ch. 8.3 - You are traveling along a freeway at 65 mi/h. Your...Ch. 8 - Prob. 1OQCh. 8 - Two children stand on a platform at the top of a...Ch. 8 - Prob. 3OQCh. 8 - An athlete jumping vertically on a trampoline...Ch. 8 - Prob. 5OQCh. 8 - In a laboratory model of cars skidding to a stop,...
Ch. 8 - Prob. 7OQCh. 8 - Prob. 8OQCh. 8 - Prob. 9OQCh. 8 - One person drops a ball from the top of a building...Ch. 8 - Prob. 2CQCh. 8 - Prob. 3CQCh. 8 - Prob. 4CQCh. 8 - Prob. 5CQCh. 8 - Prob. 6CQCh. 8 - In the general conservation of energy equation,...Ch. 8 - Prob. 8CQCh. 8 - A block is connected to a spring that is suspended...Ch. 8 - Prob. 10CQCh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - A 20.0-kg cannonball is fired from a cannon with...Ch. 8 - Prob. 5PCh. 8 - A block of mass m = 5.00 kg is released from point...Ch. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - A light, rigid rod is 77.0 cm long. Its top end is...Ch. 8 - At 11:00 a.m, on September 7, 2001, more than one...Ch. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - A sled of mass m is given a kick on a frozen pond....Ch. 8 - A crate of mass 10.0 kg is pulled up a rough...Ch. 8 - Prob. 15PCh. 8 - A 40.0-kg box initially at rest is pushed 5.00 m...Ch. 8 - Prob. 17PCh. 8 - At time ti, the kinetic energy of a particle is...Ch. 8 - Prob. 19PCh. 8 - As shown in Figure P8.10, a green bead of mass 25...Ch. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - A 1.50-kg object is held 1.20 m above a relaxed...Ch. 8 - Prob. 25PCh. 8 - An 80.0-kg skydiver jumps out of a balloon at an...Ch. 8 - Prob. 27PCh. 8 - Prob. 28PCh. 8 - Prob. 29PCh. 8 - The electric motor of a model train accelerates...Ch. 8 - Prob. 31PCh. 8 - Prob. 32PCh. 8 - An energy-efficient lightbulb, taking in 28.0 W of...Ch. 8 - Prob. 34PCh. 8 - Prob. 35PCh. 8 - An older-model car accelerates from 0 to speed v...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - Prob. 39PCh. 8 - Energy is conventionally measured in Calories as...Ch. 8 - A loaded ore car has a mass of 950 kg and rolls on...Ch. 8 - Prob. 42APCh. 8 - Prob. 43APCh. 8 - Prob. 44APCh. 8 - Prob. 45APCh. 8 - Review. As shown in Figure P8.26, a light string...Ch. 8 - Prob. 47APCh. 8 - Why is the following situation impossible? A...Ch. 8 - Prob. 49APCh. 8 - Prob. 50APCh. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Jonathan is riding a bicycle and encounters a hill...Ch. 8 - Consider the blockspringsurface system in part (B)...Ch. 8 - As it plows a parking lot, a snowplow pushes an...Ch. 8 - Prob. 55APCh. 8 - Consider the popgun in Example 8.3. Suppose the...Ch. 8 - As the driver steps on the gas pedal, a car of...Ch. 8 - Prob. 58APCh. 8 - A horizontal spring attached to a wall has a force...Ch. 8 - Prob. 60APCh. 8 - Prob. 61APCh. 8 - Prob. 62APCh. 8 - Prob. 63APCh. 8 - Prob. 64APCh. 8 - A block of mass 0.500 kg is pushed against a...Ch. 8 - Prob. 66APCh. 8 - Prob. 67APCh. 8 - A pendulum, comprising a light string of length L...Ch. 8 - Prob. 69APCh. 8 - Review. Why is the following situation impossible?...Ch. 8 - Prob. 71APCh. 8 - Prob. 72APCh. 8 - Prob. 73APCh. 8 - Prob. 74APCh. 8 - Prob. 75APCh. 8 - Prob. 76APCh. 8 - Prob. 77APCh. 8 - Prob. 78APCh. 8 - Prob. 79CPCh. 8 - Starting from rest, a 64.0-kg person bungee jumps...Ch. 8 - Prob. 81CPCh. 8 - Prob. 82CPCh. 8 - Prob. 83CPCh. 8 - A uniform chain of length 8.00 m initially lies...Ch. 8 - Prob. 85CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A block of mass m = 0.250 kg is pressed against a spring resting on the bottom of a plane inclined an angle = 45.0 to the horizontal. The spring, which has a force constant of 955 N/m, is compressed a distance of 8.00 cm, and the block is released from rest. Consider the total energy of the springblockEarth system. a. What is the total distance the block moves from its initial position if the incline is frictionless? b. What is the total distance the block moves from its initial position if the coefficient of kinetic friction between the incline and the block is 0.330?arrow_forwardWhen jogging at 13 km/h on a level surface, a 70-kg man uses energy at a rate of approximately 850 W. Using the facts that the “human engine” is approximately 25 efficient, determine the rate at which this man uses energy when jogging up a 5.0 slope at this same speed. Assume that the frictional retarding force is the same in both cases.arrow_forwardConsider a linear spring, as in Figure 7.7(a), with mass M uniformly distributed along its length. The left end of the spring is fixed, but the right end, at the equilibrium position x=0 , is moving with speed v in the x-direction. What is the total kinetic energy of the spring? (Hint: First express the kinetic energy of an infinitesimal element of the spring dm in terms of the total mass, equilibrium length, speed of the right-hand end, and position along the spring; then integrate.)arrow_forward
- A roller-coaster car of mass 1.50 103 kg is initially at the top of a rise at point . It then moves 35.0 m at an angle of 50.0 below the horizontal to a lower point . (a) Find both the potential energy of the system when the car is at points and and the change in potential energy as the car moves from point to point , assuming y = 0 at point . (b) Repeat part (a), this time choosing y = 0 at point , which is another 15.0 m down the same slope from point .arrow_forwardA block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of hemispherical bowl of radius R = 30.0 cm, and the surface of the bowl is rough (Fig. P8.23). The blocks speed at point is 1.50 m/s. Figure P8.23 (a) What is its kinetic energy at point ? (b) How much mechanical energy is transformed into internal energy as the block moves from point to point ? (c) Is it possible to determine the coefficient of friction from these results in any simple manner? (d) Explain your answer to part (c).arrow_forwardA ball of clay falls freely to the hard floor. It does not bounce noticeably, and it very quickly comes to rest. What, then, has happened to the energy the ball had while it was falling? (a) It has been used up in producing the downward motion. (b) It has been transformed back into potential energy. (c) It has been transferred into the ball by heat. (d) It is in the ball and floor (and walls) as energy of invisible molecular motion. (e) Most of it went into sound.arrow_forward
- The Flybar high-tech pogo stick is advertised as being capable of launching jumpers up to 6 ft. The ad says that the minimum weight of a jumper is 120 lb and the maximum weight is 250 lb. It also says that the pogo stick uses a patented system of elastometric rubber springs that provides up to 1200 lbs of thrust, something common helical spring sticks simply cannot achieve (rubber has 10 times the energy storing capability of steel). a. Use Figure P8.32 to estimate the maximum compression of the pogo sticks spring. Include the uncertainty in your estimate. b. What is the effective spring constant of the elastometric rubber springs? Comment on the claim that rubber has 10 times the energy-storing capability of steel. c. Check the ads claim that the maximum height a jumper can achieve is 6 ft.arrow_forwardA small block of mass m = 200 g is released from rest at point along the horizontal diameter on the inside of a frictionless, hemispherical bowl of radius R = 30.0 cm (Fig. P8.43). Calculate (a) the gravitational potential energy of the block-Earth system when the block is at point relative to point . (b) the kinetic energy of the block at point . (c) its speed at point B, and (d) its kinetic energy and the potential energy when the block is at point . Figure P8.43 Problems 43 and 44.arrow_forwardA crate of mass 10.0 kg is pulled up a rough incline with an initial speed of 1.50 m/s. The pulling force is 100 N parallel to the incline, which makes an angle of 20.0 with the horizontal. The coefficient of kinetic friction is 0.400, and the crate is pulled 5.00 m. (a) How much work is done by the gravitational force on the crate? (b) Determine the increase in internal energy of the crateincline system owing to friction. (c) How much work is done by the 100-N force on the crate? (d) What is the change in kinetic energy of the crate? (e) What is the speed of the crate after being pulled 5.00 m?arrow_forward
- Check Your Understanding What potential energy U(x) can you substitute in Equation 8.13 that will result in motion with constant velocity of 2 m/s for a particle of mass 1 kg and mechanical energy 1 J?arrow_forwardA particle of mass 0.50 kg moves along the x -axis with a potential energy whose dependence on x is shown below. (a) What is the force on the particle at x = 2.0, 5.0, 8.0, and 12 m? (b) If the total mechanical energy E of the particle is —6.0 J, what are the minimum and maximum positions of the particle? (c) What are these positions if E = 2.0 J? (d) If E = 16 J, what are the speeds of the particle at the positions listed in part (a)?arrow_forwardIn a Coyote/Road Runner cartoon clip (https://openstaxcollege.org/l/21coyroadcarcl), a spring expands quickly and sends the coyote into a rock. If the spring extended 5 m and sent the coyote of mass 20 kg to a speed of 15 m/s, (a) what is the spring constant of this spring? (b) If the coyote were sent vertically into the air with the energy given to him by the spring, how high could he go if there were no non-conservative forces?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
8.01x - Lect 11 - Work, Kinetic & Potential Energy, Gravitation, Conservative Forces; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=9gUdDM6LZGo;License: Standard YouTube License, CC-BY