Chemical Principles
8th Edition
ISBN: 9781337247269
Author: Steven S. Zumdahl; Donald J. DeCoste
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 141AE
The solubility of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Chemical Principles
Ch. 8 - Prob. 1DQCh. 8 - Prob. 2DQCh. 8 - Mixing together solutions of acetic acid and...Ch. 8 - Sketch two pH curves, one for the titration of a...Ch. 8 - Sketch a pH curve for the titration of a weak acid...Ch. 8 - You have a solution of the weak acid HA and add...Ch. 8 - You have a solution of the weak acid HA and add...Ch. 8 - Prob. 8DQCh. 8 - You are browsing through the Handbook of...Ch. 8 - A friend tells you: "The constant Ksp of a salt is...
Ch. 8 - What happens to the Ksp value of a solid as the...Ch. 8 - Which is more likely to dissolve in an acidic...Ch. 8 - Prob. 13DQCh. 8 - Under what circumstances can the relative...Ch. 8 - Define a buffered solution. What makes up a...Ch. 8 - A good buffer generally contains relatively equal...Ch. 8 - How many of the following are buffered solutions?...Ch. 8 - Which of the following can be classified as buffer...Ch. 8 - Prob. 19ECh. 8 - Derive an equation analogous to the Henderson—...Ch. 8 - Calculate the pH of each of the following...Ch. 8 - Calculate the pH after 0.020 mole of HCl is added...Ch. 8 - Calculate the pH after 0.020 mole of NaOH is added...Ch. 8 - The results of Exercises 21-23 illustrate an...Ch. 8 - One of the most challenging parts of solving...Ch. 8 - a. Calculate the pH of a buffered solution that is...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH after 0.10mole of NaOH is added...Ch. 8 - Calculate the pH after 0.020mole of NaOH is added...Ch. 8 - Calculate the pH of a solution that is 0.40M H 2...Ch. 8 - Calculate the pH of a solution that is...Ch. 8 - Calculate the pH of a buffered solution prepared...Ch. 8 - A buffered solution is made by adding...Ch. 8 - Prob. 35ECh. 8 - How many moles of NaOH must be added to...Ch. 8 - Calculate the number of moles of HCl(g) that must...Ch. 8 - You make 1.00L of a buffered solution (pH=4.00) by...Ch. 8 - Calculate the mass of sodium acetate that must be...Ch. 8 - Calculate the pH after 0.010mole of gaseous HCl is...Ch. 8 - An aqueous solution contains dissolved...Ch. 8 - What volumes of 0.50MHNO2and0.50MNaNO2 must be...Ch. 8 - Phosphate buffers are important in regulating the...Ch. 8 - Carbonate buffers are important in regulating the...Ch. 8 - When a person exercises, muscle contractions...Ch. 8 - Which of the following mixtures would result in a...Ch. 8 - Which of the following mixtures would result in a...Ch. 8 - Calculate the pH of a solution formed by mixing...Ch. 8 - Consider the acids in Table 7.2. Which acid would...Ch. 8 - Consider the bases in Table 7.3. Which base would...Ch. 8 - A solution contains 1.0106MHOCl and an unknown...Ch. 8 - In Section 8.3 an equation was derived for the...Ch. 8 - Consider a weak acid HA with a Ka value of 1.6107....Ch. 8 - Consider the following pH curves for 100.0mL of...Ch. 8 - An acid is titrated with NaOH. The following...Ch. 8 - Consider the titration of a generic weak acid HA...Ch. 8 - Sketch the titration curve for the titration of a...Ch. 8 - Draw the general titration curve for a strong acid...Ch. 8 - Consider the following four titrations:...Ch. 8 - A student titrates an unknown weak acid HA to a...Ch. 8 - The following plot shows the pH curves for the...Ch. 8 - The figure in the preceding exercise shows the pH...Ch. 8 - Consider the titration of...Ch. 8 - Prob. 64ECh. 8 - Prob. 65ECh. 8 - Prob. 66ECh. 8 - Prob. 67ECh. 8 - Prob. 68ECh. 8 - Prob. 69ECh. 8 - Prob. 70ECh. 8 - Calculate the pH at the halfway point and at the...Ch. 8 - You have 75.0mLof0.10MHA. After adding...Ch. 8 - A student dissolves 0.0100mole of an unknown weak...Ch. 8 - What is an acid—base indicator? Define the...Ch. 8 - Two drops of indicator HIn(Ka=1.0109), where HIn...Ch. 8 - A certain indicator HIn has a pKa of 3.00 and a...Ch. 8 - Estimate the pH of a solution in which bromcresol...Ch. 8 - A solution has a pHof7.0. What would be the color...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Which of the indicators in Fig. 8.8 could be used...Ch. 8 - Methyl red has the following structure: It...Ch. 8 - Indicators can be used to estimate the pH values...Ch. 8 - When a diprotic acid, H2A, is titrated with NaOH,...Ch. 8 - A student was given a 0.10M solution of an unknown...Ch. 8 - Prob. 87ECh. 8 - Consider 100.0mLofa0.100M solution of...Ch. 8 - A 0.200-g sample of a triprotic acid...Ch. 8 - Consider the titration of 100.0mLof0.100MH3A...Ch. 8 - The titration of Na2CO3 with HCl has the following...Ch. 8 - Consider 100.0 mL of a solution of 0.200MNa2A,...Ch. 8 - For which of the following is the Ksp value of the...Ch. 8 - Ag2S(s) has a larger molar solubility than CuS...Ch. 8 - When Na3PO4(aq) is added to a solution containing...Ch. 8 - The common ion effect for ionic solids (salts) is...Ch. 8 - Prob. 97ECh. 8 - Calculate the solubility of each of the following...Ch. 8 - Use the following data to calculate the Ksp value...Ch. 8 - The concentration of Pb2+ in a solution saturated...Ch. 8 - The concentration of Ag+ in a solution saturated...Ch. 8 - The solubility of the ionic compound M2X3, having...Ch. 8 - For each of the following pairs of solids,...Ch. 8 - The solubility rules outlined in Chapter 4 say...Ch. 8 - Calculate the molar solubility of...Ch. 8 - The Ksp for silver sulfate (Ag2SO4) is 1.2105....Ch. 8 - Calculate the solubility (inmol/L) of Fe(OH)3...Ch. 8 - Prob. 108ECh. 8 - Calculate the solubility of solid Ca3(...Ch. 8 - The solubility of Ce( IO3)3 in a 0.20MKIO3...Ch. 8 - What mass of ZnS(Ksp=2.51022) will dissolve in...Ch. 8 - The concentration of Mg2+ in seawater is 0.052M....Ch. 8 - For the substances in Exercises 97and98, which...Ch. 8 - Explain the following phenomenon: You have a test...Ch. 8 - For which salt in each of the following groups...Ch. 8 - A solution is prepared by mixing 75.0mL of...Ch. 8 - Calculate the final concentrations of...Ch. 8 - A solution is prepared by mixing 50.0mLof0.10M Pb(...Ch. 8 - The Ksp of Al(OH)3 is 21032. At what pH will a...Ch. 8 - A solution is 1104M in NaF,Na2S, and Na3PO4. What...Ch. 8 - A solution contains 1.0105MNa3PO4. What is the...Ch. 8 - A solution contains 0.25MNi( NO3)2 and 0.25MCu(...Ch. 8 - Describe how you could separate the ions in each...Ch. 8 - If a solution contains either Pb2+(aq)orAg+(aq),...Ch. 8 - Sulfide precipitates are generally grouped as...Ch. 8 - Nanotechnology has become an important field, with...Ch. 8 - Prob. 127ECh. 8 - As a sodium chloride solution is added to a...Ch. 8 - The overall formation constant for HgI42is1.01030....Ch. 8 - A solution is prepared by adding 0.090mole of...Ch. 8 - Prob. 131ECh. 8 - Kf for the complex ion Ag( NH3)2+is1.7107. Ksp for...Ch. 8 - a. Using the Ksp for Cu(OH)2(1.61019) and the...Ch. 8 - The copper(I) ion forms a chloride salt that has...Ch. 8 - Solutions of sodium thiosulfate are used to...Ch. 8 - a. Calculate the molar solubility of AgI in pure...Ch. 8 - A series of chemicals was added to some...Ch. 8 - Will a precipitate of Cd(OH)2 form if 1.0mLof1.0M...Ch. 8 - Tris(hydroxymethyl)aminomethane, commonly called...Ch. 8 - Amino acids are the building blocks for all...Ch. 8 - The solubility of copper(II) hydroxide in water...Ch. 8 - The salts in Table 8.5, with the possible...Ch. 8 - You have the following reagents on hand: What...Ch. 8 - Prob. 144AECh. 8 - One method for determining the purity of aspirin...Ch. 8 - Another way to treat data from a pH titration is...Ch. 8 - Potassium hydrogen phthalate, known as KHP...Ch. 8 - sample of the ionic compound NaA, where A is the...Ch. 8 - What mass of Ca( NO3)2 must be added to 1.0L of a...Ch. 8 - The equilibrium constant for the following...Ch. 8 - Calculate the concentration of Pb2+ in each of the...Ch. 8 - Consider saturated solutions of the following...Ch. 8 - A certain acetic acid solution has pH=2.68 ....Ch. 8 - Calculate the volume of 1.5010-2MNaOH that must be...Ch. 8 - A 0.400M solution of ammonia was titrated with...Ch. 8 - A student intends to titrate a solution of a weak...Ch. 8 - The active ingredient in aspirin is...Ch. 8 - A solution is formed by mixing 50.0mL of 10.0MNaX...Ch. 8 - When phosphoric acid is titrated with a NaOH...Ch. 8 - Consider the following two acids: In two separate...Ch. 8 - Consider 1.0L of a solution that is 0.85MHOC6H5...Ch. 8 - What concentration of NH4Cl is necessary to buffer...Ch. 8 - Consider the following acids and bases:...Ch. 8 - Consider a buffered solution containing CH3NH3Cl...Ch. 8 - Consider the titration of 150.0mL of 0.100MHI by...Ch. 8 - Prob. 166AECh. 8 - Prob. 167AECh. 8 - Prob. 168AECh. 8 - Assuming that the solubility of Ca3( PO4)2(s) is...Ch. 8 - Order the following solids (ad) from least soluble...Ch. 8 - The Ksp for PbI2(s) is 1.410-8 . Calculate the...Ch. 8 - Prob. 172AECh. 8 - A 50.0-mL sample of 0.0413MAgNO3(aq) is added to...Ch. 8 - The Hg2+ ion forms complex ions with I as follows:...Ch. 8 - A buffer is made using 45.0mL of...Ch. 8 - What volume of 0.0100MNaOH must be added to 1.00L...Ch. 8 - For solutions containing salts of the form NH4X ,...Ch. 8 - Prob. 178CPCh. 8 - The copper(I) ion forms a complex ion with CN...Ch. 8 - Calcium oxalate (CaC2O4) is relatively insoluble...Ch. 8 - a. Calculate the molar solubility of SrF2 in...Ch. 8 - What is the maximum possible concentration of Ni2+...Ch. 8 - Prob. 183CPCh. 8 - Consider 1.0L of an aqueous solution that contains...Ch. 8 - Calculate the solubility of AgCN(s)(Ksp=2.21012)...Ch. 8 - Consider the titration of 100.0mL of a 1.00104M...Ch. 8 - Consider a solution formed by mixing 200.0mL of...Ch. 8 - Prob. 188CPCh. 8 - Calculate the pH of a solution prepared by mixing...Ch. 8 - Consider the titration of 100.0mL of 0.10M...Ch. 8 - In the titration of 100.0mL of a 0.0500M solution...Ch. 8 - Consider the titration curve in Exercise91 for the...Ch. 8 - Consider a solution prepared by mixing the...Ch. 8 - Prob. 194MP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Consider the reaction BaF2(s)+SO42(aq)BaSO4(s)+2 F(aq) (a) Calculate K for the reaction. (b) Will BaSO4 precipitate if Na2SO4 is added to a saturated solution of BaF2?arrow_forwardSome barium chloride is added to a solution that contains both K2SO4 (0.050 M) and Na3PO4 (0.020 M). (a) Which begins to precipitate first: the barium sulfate or the barium phosphate? (b) The concentration of the first anion species to precipitate, either the sulfate or phosphate, decreases as the precipitate forms. What is the concentration of the first species when the second begins to precipitate?arrow_forwardSolubility Equilibria Consider three hypothetical ionic solids: AX, AX2, and AX3 (each X forms X). Each of these solids has the same Ksp value, 5.5 10 7. You place 0.25 mol of each compound in a separate container and add enough water to bring the volume to 1.0 L in each case. a Write the chemical equation for each of the solids dissolving in water. b Would you expect the concentration of each solution to be 0.25 M in the compound? Explain, in some detail, why or why not. c Would you expect the concentrations of the A cations (A+, A2+, and A3+) in the three solutions to be the same? Does just knowing the stoichiometry of each reaction help you determine the answer, or do you need something else? Explain your answer in detail, but without doing any arithmetic calculations. d Of the three solids, which one would you expect to have the greatest molar solubility? Explain in detail, but without doing any arithmetic calculations. e Calculate the molar solubility of each compound.arrow_forward
- The solubility of silver sulfate, Ag2SO4, in water has been determined to be 8.0 g/L. What is the solubility in 0.45 M sodium sulfate, Na2SO4?arrow_forwardSolubility is an equilibrium position, whereas Ksp is an equilibrium constant. Explain the difference.arrow_forwardHow would the solubility of calcium fluoride be affected by the presence of fluoride ion from another source? What is the solubility of calcium fluoride in a saturated solution of barium fluoride? How does this compare with the value of the solubility of calcium fluoride found in Example 17.4? Is this what you expect?arrow_forward
- When 250 mg of SrF2, strontium fluoride, is added to 1.00 L of water, the salt dissolves to a very small extent. SrF2(s)Sr2+(aq)+2F(aq) At equilibrium, the concentration of Sr2+ is found to be 1.03 103 M. What is the value of Ksp for SrF2?arrow_forwardMagnesium hydroxide, Mg(OH)2, is the active ingredient in die antacid TUMS and has a Ksp value of 8.9 1012. If a 10.0-g sample of Mg(OH)2 is placed in 500.0 mL of solution, calculate the moles of OH ions present. Because the Ksp value for Mg(OH)2 is much less than 1, not a lot of solid dissolves in solution. Explain how Mg(OH)2 works to neutralize large amounts of stomach acid.arrow_forwardSolid lead nitrate is added to a solution that is 0.020 M in OH- and SO42-. Addition of the lead nitrate does not change the volume of the solution. (a) Which compound, PbSO4 or Pb(OH)2 (Ksp=2.81016), will precipitate first? (b) What is the pH of the solution when PbSO4 first starts to precipitate?arrow_forward
- The solubility of Mg(OH)2 in water is approximately 9.6 mg/L at a given temperature. Calculate the Ksp of magnesium hydroxide. Calculate the hydroxide concentration needed to precipitate Mg2+ ions such that no more than 5.0 μg Mg2+ per liter remains in the solution.arrow_forwardA saturated solution of silver arsenate, Ag3AsO4, contains 8.5 107 g Ag3AsO4 per mL. Calculate the Ksp of silver arsenate. Assume that there are no other reactions but the Ksp reaction.arrow_forwardEach pair of ions below is found together in aqueous solution. Using the table of solubility product constants in Appendix J, devise a way to separate these ions by adding a reagent to precipitate one of the ions as an insoluble salt and leave the other in solution. (a) Cu2+ and Ag+ (b) A13+ and Fe3+arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry for Engineering Students
Chemistry
ISBN:9781337398909
Author:Lawrence S. Brown, Tom Holme
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
General Chemistry | Acids & Bases; Author: Ninja Nerd;https://www.youtube.com/watch?v=AOr_5tbgfQ0;License: Standard YouTube License, CC-BY