
EBK ELECTRIC CIRCUITS
11th Edition
ISBN: 9780134747224
Author: Riedel
Publisher: PEARSON CUSTOM PUB.(CONSIGNMENT)
expand_more
expand_more
format_list_bulleted
Question
Chapter 8, Problem 12P
a.
To determine
Change the resistance for the designed circuit in Problem 8.11 in order to attain the underdamped response and find the roots of the characteristic equation with the new resistance.
b.
To determine
Change the resistance for the designed circuit in Problem 8.11 in order to attain the overdamped response and find the roots of the characteristic equation with the new resistance.
The roots of the characteristic equation with the new resistance are
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q1. The three-phase full-wave converter in Figure shown is operated from a three phase
Y-connected supply. Sketch the output voltages appeared at the load for firing angle 15°.
I need Sketch
an
Ven
จ
T1 Q
Yi₁ = I₂
a ia = is
T₁
T3
T₂
Vbn
b ib
Load Highly inductive
load
▲ T6
T₂
iT4
On
T5, T6
T6, T₁
T2, T3
T3, T4
T4, T5
T5, T6
ཅ
0
T₁
الاسم
T₁
Is
wt
Q4. For the control system is shown in Figure 2, by using second method
of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and
make tuning for this parameters to get accepting response for the
هندسة الكم
following system, then compare your results for all types controllers?
R(S)
K
C(s)
S3+4S² +11S
Figure (2)
Q1. Consider the unity feedback control system whose open-loop
transfer function is:
G(s):
=
40(S+2)
s(s+3)(s+1)(s + 10)
ELECTRIC
Ziegler-Nichols,
By using second method of Ziegler- Nichols, calculate the PID, PI-D and
I-PD parameters and make tuning for this parameters to get accepting
response for the following system, then comp
controllers?
PARTME
then compare your results for all types
GINEARI
Chapter 8 Solutions
EBK ELECTRIC CIRCUITS
Ch. 8.1 - The resistance and inductance of the circuit in...Ch. 8.2 - Use the integral relationship between iL and v to...Ch. 8.2 - Prob. 3APCh. 8.2 - Prob. 4APCh. 8.2 - Prob. 5APCh. 8.3 - Prob. 6APCh. 8.4 - Prob. 7APCh. 8.4 - Prob. 8APCh. 8.4 - Repeat Assessment Problems 8.7 and 8.8 if the 80 Ω...Ch. 8 - The resistance, inductance, and capacitance in a...
Ch. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - Prob. 4PCh. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - The natural response for the circuit shown in Fig....Ch. 8 - The natural voltage response of the circuit in...Ch. 8 - The voltage response for the circuit in Fig. 8.1...Ch. 8 - Prob. 10PCh. 8 - Design a parallel RLC circuit (see Fig. 8.1) using...Ch. 8 - Prob. 12PCh. 8 - The initial value of the voltage υ in the circuit...Ch. 8 - Prob. 14PCh. 8 - The resistor in the circuit of Fig. P8.14 is...Ch. 8 - Prob. 16PCh. 8 - The switch in the circuit of Fig. P8.17 has been...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - The inductor in the circuit of Fig. P8.17 is...Ch. 8 - Prob. 20PCh. 8 - Prob. 21PCh. 8 - Prob. 22PCh. 8 - Prob. 23PCh. 8 - Prob. 24PCh. 8 - Prob. 25PCh. 8 - Prob. 26PCh. 8 - The switch in the circuit in Fig. P8.27 has been...Ch. 8 - For the circuit in Fig. P8.27, find υo for t ≥...Ch. 8 - The switch in the circuit in Fig. P8.29 has been...Ch. 8 - There is no energy stored in the circuit in Fig....Ch. 8 - For the circuit in Fig. P8.30, find υo for t ≥...Ch. 8 - Prob. 32PCh. 8 - Prob. 33PCh. 8 - Prob. 34PCh. 8 - Switches 1 and 2 in the circuit in Fig. P8.35 are...Ch. 8 - The switch in the circuit in Fig. P8.36 has been...Ch. 8 - Prob. 37PCh. 8 - Prob. 38PCh. 8 - In the circuit in Fig. P8.39, the resistor is...Ch. 8 - The initial energy stored in the 50 nF capacitor...Ch. 8 - Prob. 41PCh. 8 - Find the voltage across the 80 nF capacitor for...Ch. 8 - Design a series RLC circuit (see Fig. 8.3) using...Ch. 8 - Change the resistance for the circuit you designed...Ch. 8 - Prob. 45PCh. 8 - Prob. 46PCh. 8 - Prob. 47PCh. 8 - The switch in the circuit shown in Fig. P8.48 has...Ch. 8 - Prob. 49PCh. 8 - The initial energy stored in the circuit in Fig....Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - The resistor in the circuit shown in Fig. P8.50 is...Ch. 8 - The two switches in the circuit seen in Fig. P8.53...Ch. 8 - Prob. 54PCh. 8 - Prob. 55PCh. 8 - The circuit parameters in the circuit of Fig....Ch. 8 - Prob. 57PCh. 8 - Prob. 58PCh. 8 - Prob. 59PCh. 8 - Prob. 60PCh. 8 - Prob. 61PCh. 8 - Derive the differential equation that relates the...Ch. 8 - The voltage signal of Fig. P8.63(a) is applied to...Ch. 8 - The circuit in Fig. P8.63 (b) is modified by...Ch. 8 - Prob. 65PCh. 8 - Prob. 66PCh. 8 - Prob. 67PCh. 8 - Prob. 68P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Q2. Consider the control system whose open-loop transfer function is: G(s) = K قسم s (s2 +4.8s + 12.6) By using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers?arrow_forwardQ3. For the control system is shown in Figure 1, by using second method of Ziegler- Nichols, calculate the PID, PI-D and I-PD parameters and make tuning for this parameters to get accepting response for the following system, then compare your results for all types controllers? R(s) + C(s) 1 GES s(s+3)(s+6) PID controller Figure (1) INarrow_forwardUse Newton-Raphson method to solve the system x³+y-1=0 4 y³-x+1=0 with the starting value (xo,yo) = (1,0). Take n=4.arrow_forward
- Use Newton-Raphson method to solve the system 3x²y - 10x+7=0 y²-5y+4=0 With the starting value (xo, yo) = (0.5, 0.5). Take n = 1arrow_forwardUse Newton-Raphson method to solve the system x²-2xy+0.5= 0 x²+4y² 40 - with the starting value (xo, yo) = (2, 0.25) and two iteration number.arrow_forwardProblem 7 [2.5 pts] The response of an LTI system to u[n+2] appears to be the following sequence. -3-2-101234 Do we have enough information to determine the impulse response of this system? If so, derive it and plot it. If not, explain why.arrow_forward
- Problem 4 5' Consider the systems S₁(x[n]) = x[n]+5[n²−1] and S2(x[n]) = x[n(n−2)]. a [2 pts] Plot the impulse responses of S₁ and S2, respectively. b [2.5 pts] Determine whether S₁ and S2 are causal. Justify your answer in details. Warning: There will be no credit for just 'yes' or 'no' answer.arrow_forward22: Line charges PL 2π nC/m are located at xy-plane as shown in Figure-1, find the electric field intensity (E) at (0, 0, 2)? 2arrow_forward11.4 Determine Vout in the circuit shown in Fig. P11.4. through any methodarrow_forward
- Solve the following nonlinear system using Newton's method 1 f1(x1, x2, x3)=3x₁ = cos(x2x3) - - 2 f2(x1, x2, x3) = x² - 81(x2 +0.1)² + sin x3 + 1.06 f3(x1, x2, x3) = ex1x2 +20x3 + Using x (0) X1 X2 X3 10π-3 3 = 0.1, 0.1, 0.1 as initial conditioarrow_forwardUse Newton-Raphson method to solve the system x² - 2x-y+0.5= 0 x² + 4y² 4 = 0 - with the starting value (xo,yo) = (2,0.25) and two iteration number.arrow_forwardReversing 3⍉ Motors using manual starters with wiring diagram of forward contacts and reverse contacts.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
02 - Sinusoidal AC Voltage Sources in Circuits, Part 1; Author: Math and Science;https://www.youtube.com/watch?v=8zMiIHVMfaw;License: Standard Youtube License