(a) Interpretation: Using the average atomic masses, the number of atoms of the sample should be determined. 160, 000 amu of oxygen Concept Introduction: Atomic mass unit measures mass in an atomic scale, it is a standard unit for mass. Here, 1 amu is equal to the mass of either one proton or neutron and equals to 1 g/mol. Atomic mass unit is equal to 1/12 t h of the mass of C-12 atom. For example, if average atomic mass of carbon is 12.01 thus, it is the mass of 1 carbon atom.
(a) Interpretation: Using the average atomic masses, the number of atoms of the sample should be determined. 160, 000 amu of oxygen Concept Introduction: Atomic mass unit measures mass in an atomic scale, it is a standard unit for mass. Here, 1 amu is equal to the mass of either one proton or neutron and equals to 1 g/mol. Atomic mass unit is equal to 1/12 t h of the mass of C-12 atom. For example, if average atomic mass of carbon is 12.01 thus, it is the mass of 1 carbon atom.
Solution Summary: The author explains how the average atomic masses determine the number of atoms of the sample.
Using the average atomic masses, the number of atoms of the sample should be determined.
160, 000 amu of oxygen
Concept Introduction:
Atomic mass unit measures mass in an atomic scale, it is a standard unit for mass. Here, 1 amu is equal to the mass of either one proton or neutron and equals to 1 g/mol. Atomic mass unit is equal to 1/12th of the mass of C-12 atom. For example, if average atomic mass of carbon is 12.01 thus, it is the mass of 1 carbon atom.
Interpretation Introduction
(b)
Interpretation:
Using the average atomic masses, the number of atoms of the sample should be determined.
8139.81 amu of nitrogen
Concept Introduction:
Atomic mass unit measures mass in an atomic scale, it is a standard unit for mass. Here, 1 amu is equal to the mass of either one proton or neutron and equals to 1 g/mol. Atomic mass unit is equal to 1/12th of the mass of C-12 atom. For example, if average atomic mass of carbon is 12.01 thus, it is the mass of 1 carbon atom.
Interpretation Introduction
(c)
Interpretation:
Using the average atomic masses, the number of atoms of the sample should be determined.
13, 490 amu of aluminium
Concept Introduction:
Atomic mass unit measures mass in an atomic scale, it is a standard unit for mass. Here, 1 amu is equal to the mass of either one proton or neutron and equals to 1 g/mol. Atomic mass unit is equal to 1/12th of the mass of C-12 atom. For example, if average atomic mass of carbon is 12.01 thus, it is the mass of 1 carbon atom.
Interpretation Introduction
(d)
Interpretation:
Using the average atomic masses, the number of atoms of the sample should be determined.
5040 amu of hydrogen
Concept Introduction:
Atomic mass unit measures mass in an atomic scale, it is a standard unit for mass. Here, 1 amu is equal to the mass of either one proton or neutron and equals to 1 g/mol. Atomic mass unit is equal to 1/12th of the mass of C-12 atom. For example, if average atomic mass of carbon is 12.01 thus, it is the mass of 1 carbon atom.
Interpretation Introduction
(e)
Interpretation:
Using the average atomic masses, the number of atoms of the sample should be determined.
367, 495.15 amu of sodium
Concept Introduction:
Atomic mass unit measures mass in an atomic scale, it is a standard unit for mass. Here, 1 amu is equal to the mass of either one proton or neutron and equals to 1 g/mol. Atomic mass unit is equal to 1/12th of the mass of C-12 atom. For example, if average atomic mass of carbon is 12.01 thus, it is the mass of 1 carbon atom.
A small artisanal cheesemaker is testing the acidity of their milk
before it coagulates. During fermentation, bacteria produce lactic
acid (K₁ = 1.4 x 104), a weak acid that helps to curdle the milk and
develop flavor. The cheesemaker has measured that the developing
mixture contains lactic acid at an initial concentration of 0.025 M.
Your task is to calculate the pH of this mixture and determine whether
it meets the required acidity for proper cheese development. To
achieve the best flavor, texture and reduce/control microbial growth,
the pH range needs to be between pH 4.6 and 5.0.
Assumptions:
Lactic acid is a monoprotic acid
H
H
:0:0:
H-C-C
H
:0:
O-H
Figure 1: Lewis Structure for Lactic Acid
For simplicity, you can use the generic formula HA to represent the acid
You can assume lactic acid dissociation is in water as milk is mostly water.
Temperature is 25°C
1. Write the K, expression for the dissociation of lactic acid in the space provided. Do not forget to
include state symbols.…
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product
structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s).
Be sure to account for all bond-breaking and bond-making steps.
:0:
:0
H.
0:0
:0:
:6:
S:
:0:
Select to Edit Arrows
::0
Select to Edit Arrows
H
:0:
H
:CI:
Rotation
Select to Edit Arrows
H.
<
:0:
:0:
:0:
S:
3:48 PM Fri Apr 4
K
Problem 4 of 10
Submit
Curved arrows are used to illustrate the flow of electrons. Using the provided starting and product
structures, draw the curved electron-pushing arrows for the following reaction or mechanistic step(s).
Be sure to account for all bond-breaking and bond-making steps.
Mg.
:0:
Select to Add Arrows
:0:
:Br:
Mg
:0:
:0:
Select to Add Arrows
Mg.
Br:
:0:
0:0-
Br
-190
H
0:0
Select to Add Arrows
Select to Add Arrows
neutralizing workup
H
CH3
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Step by Step Stoichiometry Practice Problems | How to Pass ChemistryMole Conversions Made Easy: How to Convert Between Grams and Moles; Author: Ketzbook;https://www.youtube.com/watch?v=b2raanVWU6c;License: Standard YouTube License, CC-BY