Concept explainers
Counting Methods. Answer the following questions us-
ing the appropriate counting technique. which may be either
arrangements with repetition. permutations. Or combinations.
Be sure to explain why this counting technique applies to the
problem.
23. HOW many different nine-digit ZIP codes can be formed?
24. How many different six-character can formed
from the lowercase letters of the ?
25. HOW many different six-character passwords can formed
from the lowercase letters of the alphabet if repetition is not
allowed?
26. A city council with eight members must elect a
executive committee consisting of a mayor, secretary, and
treasurer. How many executive committees are possible?
27. How many ways can the eight performances at a piano recital
be ordered?
28. A city council with ten members must appoint a four-person
subcommittee. How many subcommittees are possible?
29. Suppose you have 15 CDs from which you 6 CDs to
put in the CD player in your car. If you are not particular
about the order, how many O-CD sets are possible?
30.HOW many 6-person can be formed from a & player
volleyball assuming every player can be assign to
any position?
31. How many different birth orders with respect to gender
possible in a family with five children? (For example.
and BGBGG are different orders.)
32. HOW many different 5-cards can be dealt from a 52-card
deck?
33. How many license plates can be made of the form XX—YYYY,
where X is a letter Of the and Y is a numeral 0—9?
34. How many different groups of balls can drawn from
a barrel containing balls numbered 1—36?
35. How many different telephone numbers of the form aaa-bbb-
cccc formed if the area code cannot contain 0 and
the prefix bbb cannot contain 9?
36. HOW many anagrams (rearrangements) Of the letters
ILOVEMATH can nuke?
37. How many different three-letter “words”- can formed from
the ACGT?
38. The debate club has 18 members, but only 4 can compete
at the next meet. How many 4-Frson teams are possible?
39. A recording engineer wants to make a CD With 12 songs. In
how many different ways can the CD nude?
40. A shelter is giving away 15 but you have
room for only 4 of them. How many different families
could you have?
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
- solve questions 3, 4,5, 7, 8, and 9arrow_forwardFind the perimeter and areaarrow_forward4. Please solve this for me and show every single step. I am studying and got stuck on this practice question, and need help in solving it. Please be very specific and show every step. Thanks. I WANT A HUMAN TO SOLVE THIS PLEASE.arrow_forward
- 3. Please solve this for me and show every single step. I am studying and got stuck on this practice question, and need help in solving it. Please be very specific and show every step. Thanks.arrow_forward5. Please solve this for me and show every single step. I am studying and got stuck on this practice question, and need help in solving it. Please be very specific and show every step. Thanks. I WANT A HUMAN TO SOLVE THIS PLEASE.arrow_forward2. Please solve this for me and show every single step. I am studying and got stuck on this practice question, and need help in solving it. Please be very specific and show every step. Thanks.arrow_forward
- 1. Please solve this for me and show every single step. I am studying and got stuck on this practice question, and need help in solving it. Please be very specific and show every step. Thanks.arrow_forwardAssume {u1, U2, us} spans R³. Select the best statement. A. {U1, U2, us, u4} spans R³ unless u is the zero vector. B. {U1, U2, us, u4} always spans R³. C. {U1, U2, us, u4} spans R³ unless u is a scalar multiple of another vector in the set. D. We do not have sufficient information to determine if {u₁, u2, 43, 114} spans R³. OE. {U1, U2, 3, 4} never spans R³. F. none of the abovearrow_forwardQ1/Details of square footing are as follows: DL = 800 KN, LL = 500 kN, Fy=414 MPa, Fc = 20 MPa Footing, qa = 120 kPa, Column (400x400) mm. Determine the dimensions of footing and thickness? Q2/ For the footing system shown in Figure below, find the suitable size (BxL) for: 1. Non uniform pressure, 2. Uniform pressure, 3.Uniform pressure with moment in clockwise direction. (Use qmax=qall =200kPa). Property, line M=200KN.m 1m P-1000KNarrow_forward
- Refer to page 52 for solving the heat equation using separation of variables. Instructions: • • • Write the heat equation in its standard form and apply boundary and initial conditions. Use the method of separation of variables to derive the solution. Clearly show the derivation of eigenfunctions and coefficients. Provide a detailed solution, step- by-step. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440AZF/view?usp=sharing]arrow_forwardAssume {u1, U2, 13, 14} spans R³. Select the best statement. A. {U1, U2, u3} never spans R³ since it is a proper subset of a spanning set. B. {U1, U2, u3} spans R³ unless one of the vectors is the zero vector. C. {u1, U2, us} spans R³ unless one of the vectors is a scalar multiple of another vector in the set. D. {U1, U2, us} always spans R³. E. {U1, U2, u3} may, but does not have to, span R³. F. none of the abovearrow_forwardLet H = span {u, v}. For each of the following sets of vectors determine whether H is a line or a plane. Select an Answer u = 3 1. -10 8-8 -2 ,v= 5 Select an Answer -2 u = 3 4 2. + 9 ,v= 6arrow_forward
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALFunctions and Change: A Modeling Approach to Coll...AlgebraISBN:9781337111348Author:Bruce Crauder, Benny Evans, Alan NoellPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning