Bundle: Elementary Linear Algebra, Loose-leaf Version, 8th + MindTap Math, 1 term (6 months) Printed Access Card
8th Edition
ISBN: 9781337131216
Author: Ron Larson
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.CM, Problem 17CM
To determine
The matrix of given linear transformation relative to given bases and use the matrix to find the image of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let f be the linear transformation represented by the matrix
A =
4-(32)
Find the point (x, y) such that f(x, y) = (-4,-1).
(Give your answer exactly, not as a decimal approximation.)
The point is
(3) Find the matrix of the linear transformation that sends a vector to its
reflection to the plane x1 – x2 + x3 = 0.
Use properties of the linear transformation T(x, y, z) = (x−y, x + y + 3z, -2y+z) to
determine if the matrix for T is invertible or not.
Chapter 7 Solutions
Bundle: Elementary Linear Algebra, Loose-leaf Version, 8th + MindTap Math, 1 term (6 months) Printed Access Card
Ch. 7.1 - Verifying Eigenvalues and Eigenvectors in...Ch. 7.1 - Verifying Eigenvalues and EigenvectorsIn Exercises...Ch. 7.1 - Verifying Eigenvalues and EigenvectorsIn Exercises...Ch. 7.1 - Verifying Eigenvalues and Eigenvectors in...Ch. 7.1 - Verifying Eigenvalues and EigenvectorsIn Exercises...Ch. 7.1 - Verifying Eigenvalues and EigenvectorsIn Exercises...Ch. 7.1 - Prob. 7ECh. 7.1 - Prob. 8ECh. 7.1 - Determining Eigenvectors In Exercise 9-12,...Ch. 7.1 - Determining Eigenvectors In Exercise 9-12,...
Ch. 7.1 - Determining Eigenvectors In Exercise 9-12,...Ch. 7.1 - Prob. 12ECh. 7.1 - Prob. 13ECh. 7.1 - Prob. 14ECh. 7.1 - Characteristic Equation, Eigenvalues, and...Ch. 7.1 - Characteristic Equation, Eigenvalues, and...Ch. 7.1 - Characteristic Equation, Eigenvalues, and...Ch. 7.1 - Prob. 18ECh. 7.1 - Characteristic Equation, Eigenvalues, and...Ch. 7.1 - Prob. 20ECh. 7.1 - Characteristic Equation, Eigenvalues and...Ch. 7.1 - Characteristic Equation, Eigenvalues and...Ch. 7.1 - Characteristic Equation, Eigenvalues and...Ch. 7.1 - Prob. 24ECh. 7.1 - Characteristic Equation, Eigenvalues and...Ch. 7.1 - Characteristic Equation, Eigenvalues and...Ch. 7.1 - Characteristic Equation, Eigenvalues and...Ch. 7.1 - Characteristic Equation, Eigenvalues and...Ch. 7.1 - Prob. 29ECh. 7.1 - Prob. 30ECh. 7.1 - Prob. 31ECh. 7.1 - Prob. 32ECh. 7.1 - Prob. 33ECh. 7.1 - Prob. 34ECh. 7.1 - Prob. 35ECh. 7.1 - Prob. 36ECh. 7.1 - Prob. 37ECh. 7.1 - Prob. 38ECh. 7.1 - Prob. 39ECh. 7.1 - Finding EigenvaluesIn Exercises 29-40, use a...Ch. 7.1 - Eigenvalues of Triangular and Diagonal Matrices In...Ch. 7.1 - Eigenvalues of Triangular and Diagonal Matrices In...Ch. 7.1 - Prob. 43ECh. 7.1 - Eigenvalues of Triangular and Diagonal Matrices In...Ch. 7.1 - Eigenvalues and Eigenvectors of Linear...Ch. 7.1 - Prob. 46ECh. 7.1 - Eigenvalues and Eigenvectors of Linear...Ch. 7.1 - Eigenvalues and Eigenvectors of Linear...Ch. 7.1 - Cayley-Hamilton TheoremIn Exercises 49-52,...Ch. 7.1 - Cayley-Hamilton TheoremIn Exercises 49-52,...Ch. 7.1 - Prob. 51ECh. 7.1 - Prob. 52ECh. 7.1 - Prob. 53ECh. 7.1 - Prob. 54ECh. 7.1 - Prob. 55ECh. 7.1 - Prob. 56ECh. 7.1 - Prob. 57ECh. 7.1 - Proof Prove that A and AT have the same...Ch. 7.1 - Prob. 59ECh. 7.1 - Define T:R2R2 by T(v)=projuv Where u is a fixed...Ch. 7.1 - Prob. 61ECh. 7.1 - Prob. 62ECh. 7.1 - Prob. 63ECh. 7.1 - Prob. 64ECh. 7.1 - Prob. 65ECh. 7.1 - Show that A=[0110] has no real eigenvalues.Ch. 7.1 - True or False? In Exercises 67 and 68, determine...Ch. 7.1 - True or False? In Exercises 67 and 68, determine...Ch. 7.1 - Finding the Dimension of an Eigenspace In...Ch. 7.1 - Finding the Dimension of an Eigenspace In...Ch. 7.1 - Prob. 71ECh. 7.1 - Prob. 72ECh. 7.1 - Prob. 73ECh. 7.1 - Prob. 74ECh. 7.1 - Prob. 75ECh. 7.1 - Define T:P2P2 by...Ch. 7.1 - Prob. 77ECh. 7.1 - Find all values of the angle for which the matrix...Ch. 7.1 - Prob. 79ECh. 7.1 - Prob. 80ECh. 7.1 - Prob. 81ECh. 7.2 - Diagonalizable Matrices and Eigenvalues In...Ch. 7.2 - Diagonalizable Matrices and Eigenvalues In...Ch. 7.2 - Diagonalizable Matrices and Eigenvalues In...Ch. 7.2 - Diagonalizable Matrices and Eigenvalues In...Ch. 7.2 - Diagonalizable Matrices and Eigenvalues In...Ch. 7.2 - Prob. 6ECh. 7.2 - Diagonalizing a Matrix In Exercise 7-14, find if...Ch. 7.2 - Prob. 8ECh. 7.2 - Diagonalizing a Matrix In Exercise 7-14, find if...Ch. 7.2 - Diagonalizing a Matrix In Exercise 7-14, find if...Ch. 7.2 - Diagonalizing a Matrix In Exercise 7-14, find if...Ch. 7.2 - Diagonalizing a Matrix In Exercise 7-14, find if...Ch. 7.2 - Diagonalizing a Matrix In Exercise 7-14, find if...Ch. 7.2 - Prob. 14ECh. 7.2 - Show That a Matrix Is Not Diagonalizable In...Ch. 7.2 - Prob. 16ECh. 7.2 - Show That a Matrix Is Not Diagonalizable In...Ch. 7.2 - Show That a Matrix Is Not Diagonalizable In...Ch. 7.2 - Show That a Matrix Is Not Diagonalizable In...Ch. 7.2 - Show That a Matrix Is Not Diagonalizable In...Ch. 7.2 - Prob. 21ECh. 7.2 - Prob. 22ECh. 7.2 - Determine a Sufficient Condition for...Ch. 7.2 - Determine a Sufficient Condition for...Ch. 7.2 - Determine a Sufficient Condition for...Ch. 7.2 - Determine a Sufficient Condition for...Ch. 7.2 - Finding a Basis In Exercises 27-30, find a basis B...Ch. 7.2 - Finding a Basis In Exercises 27-30, find a basis B...Ch. 7.2 - Prob. 29ECh. 7.2 - Prob. 30ECh. 7.2 - Prob. 31ECh. 7.2 - Prob. 32ECh. 7.2 - Prob. 33ECh. 7.2 - Finding a Power of a Matrix In Exercises 33-36,...Ch. 7.2 - Prob. 35ECh. 7.2 - Prob. 36ECh. 7.2 - True or False? In Exercises 37 and 38, determine...Ch. 7.2 - True or False? In Exercises 37 and 38, determine...Ch. 7.2 - Are the two matrices similar? If so, find a matrix...Ch. 7.2 - Prob. 40ECh. 7.2 - Prob. 41ECh. 7.2 - Proof Prove that if matrix A is diagonalizable,...Ch. 7.2 - Proof Prove that if matrix A is diagonalizable...Ch. 7.2 - Prob. 44ECh. 7.2 - Prob. 45ECh. 7.2 - Guide Proof Prove nonzero nilpotent matrices are...Ch. 7.2 - Prob. 47ECh. 7.2 - CAPSTONE Explain how to determine whether an nn...Ch. 7.2 - Prob. 49ECh. 7.2 - Showing That a Matrix Is Not Diagonalizable In...Ch. 7.3 - Determining Whether a Matrix Is Symmetric In...Ch. 7.3 - Prob. 2ECh. 7.3 - Proof In Exercise 3-6, prove that the symmetric...Ch. 7.3 - Prob. 4ECh. 7.3 - Prob. 5ECh. 7.3 - Prob. 6ECh. 7.3 - Finding Eigenvalues and Dimensions of Eigen spaces...Ch. 7.3 - Finding Eigenvalues and Dimensions of Eigen spaces...Ch. 7.3 - Finding Eigenvalues and Dimensions of Eigen spaces...Ch. 7.3 - Finding Eigenvalues and Dimensions of Eigen spaces...Ch. 7.3 - Finding Eigenvalues and Dimensions of Eigen spaces...Ch. 7.3 - Finding Eigenvalues and Dimensions of Eigen spaces...Ch. 7.3 - Finding Eigenvalues and Dimensions of Eigen spaces...Ch. 7.3 - Prob. 14ECh. 7.3 - Prob. 15ECh. 7.3 - Prob. 16ECh. 7.3 - Prob. 17ECh. 7.3 - Prob. 18ECh. 7.3 - Determine Whether a Matrix Is Orthogonal In...Ch. 7.3 - Prob. 20ECh. 7.3 - Prob. 21ECh. 7.3 - Prob. 22ECh. 7.3 - Prob. 23ECh. 7.3 - Prob. 24ECh. 7.3 - Prob. 25ECh. 7.3 - Prob. 26ECh. 7.3 - Prob. 27ECh. 7.3 - Prob. 28ECh. 7.3 - Prob. 29ECh. 7.3 - Prob. 30ECh. 7.3 - Prob. 31ECh. 7.3 - Prob. 32ECh. 7.3 - Prob. 33ECh. 7.3 - Prob. 34ECh. 7.3 - Prob. 35ECh. 7.3 - Eigenvectors of Symmetric Matrix In Exercises...Ch. 7.3 - Prob. 37ECh. 7.3 - Prob. 38ECh. 7.3 - Prob. 39ECh. 7.3 - Orthogonally Diagonalizable Matrices In Exercise...Ch. 7.3 - Prob. 41ECh. 7.3 - Prob. 42ECh. 7.3 - Prob. 43ECh. 7.3 - Prob. 44ECh. 7.3 - Orthogonal Diagonalization In Exercise 43-52, find...Ch. 7.3 - Orthogonal Diagonalization In Exercise 43-52, find...Ch. 7.3 - Orthogonal Diagonalization In Exercise 4-52, find...Ch. 7.3 - Prob. 48ECh. 7.3 - Prob. 49ECh. 7.3 - Orthogonal Diagonalization In Exercise 43-52, find...Ch. 7.3 - Orthogonal Diagonalization In Exercise 4-52, find...Ch. 7.3 - Prob. 52ECh. 7.3 - Prob. 53ECh. 7.3 - Prob. 54ECh. 7.3 - Prob. 55ECh. 7.3 - Prob. 56ECh. 7.3 - Prob. 57ECh. 7.3 - Prob. 58ECh. 7.3 - Prob. 59ECh. 7.3 - Find ATA and AAT for the matrix below. What do you...Ch. 7.4 - Finding Age Distribution Vectors In Exercises 1-6,...Ch. 7.4 - Prob. 2ECh. 7.4 - Prob. 3ECh. 7.4 - Finding Age Distribution Vectors In Exercises 1-6,...Ch. 7.4 - Prob. 5ECh. 7.4 - Prob. 6ECh. 7.4 - Population Growth Model A population has the...Ch. 7.4 - Population Growth Model A population has the...Ch. 7.4 - Prob. 9ECh. 7.4 - Find the limit if it exists of Anx1 as n...Ch. 7.4 - Prob. 11ECh. 7.4 - Prob. 12ECh. 7.4 - Prob. 13ECh. 7.4 - Prob. 14ECh. 7.4 - Prob. 15ECh. 7.4 - Prob. 16ECh. 7.4 - Prob. 17ECh. 7.4 - Prob. 18ECh. 7.4 - Prob. 19ECh. 7.4 - Prob. 20ECh. 7.4 - Solving a System of Linear Differential Equations...Ch. 7.4 - Solving a System of Linear Differential Equations...Ch. 7.4 - Prob. 23ECh. 7.4 - Solving a System of Linear Differential Equations...Ch. 7.4 - Prob. 25ECh. 7.4 - Prob. 26ECh. 7.4 - Solving a System of Linear Differential Equations...Ch. 7.4 - Prob. 28ECh. 7.4 - Prob. 29ECh. 7.4 - Prob. 30ECh. 7.4 - Prob. 31ECh. 7.4 - Prob. 32ECh. 7.4 - Prob. 33ECh. 7.4 - Prob. 34ECh. 7.4 - Prob. 35ECh. 7.4 - Prob. 36ECh. 7.4 - Prob. 37ECh. 7.4 - Prob. 38ECh. 7.4 - Prob. 39ECh. 7.4 - Prob. 40ECh. 7.4 - Prob. 41ECh. 7.4 - Prob. 42ECh. 7.4 - Prob. 43ECh. 7.4 - Prob. 44ECh. 7.4 - Prob. 45ECh. 7.4 - Prob. 46ECh. 7.4 - Rotation of a Conic In Exercises 45-52, use the...Ch. 7.4 - Prob. 48ECh. 7.4 - Prob. 49ECh. 7.4 - Prob. 50ECh. 7.4 - Prob. 51ECh. 7.4 - Prob. 52ECh. 7.4 - Prob. 53ECh. 7.4 - Prob. 54ECh. 7.4 - Prob. 55ECh. 7.4 - Prob. 56ECh. 7.4 - Prob. 57ECh. 7.4 - Prob. 58ECh. 7.4 - Prob. 59ECh. 7.4 - Prob. 60ECh. 7.4 - Prob. 61ECh. 7.4 - Prob. 62ECh. 7.4 - Prob. 63ECh. 7.4 - Prob. 64ECh. 7.4 - Prob. 65ECh. 7.4 - Prob. 66ECh. 7.4 - Prob. 67ECh. 7.4 - Use your schools library, the Internet, or some...Ch. 7.CR - Characteristic Equation, Eigenvalues, and Basis In...Ch. 7.CR - Characteristic Equation, Eigenvalues, and Basis In...Ch. 7.CR - Characteristic Equation, Eigenvalues, and Basis In...Ch. 7.CR - Prob. 4CRCh. 7.CR - Characteristic Equation, Eigenvalues, and Basis In...Ch. 7.CR - Prob. 6CRCh. 7.CR - Characteristics Equation, Eigenvalues, and Basis...Ch. 7.CR - Characteristics Equation, Eigenvalues, and Basis...Ch. 7.CR - Determining Whether a Matrix Is DiagonalizableIn...Ch. 7.CR - Prob. 10CRCh. 7.CR - Determining Whether a Matrix Is DiagonalizableIn...Ch. 7.CR - Prob. 12CRCh. 7.CR - Determining Whether a Matrix Is DiagonalizableIn...Ch. 7.CR - Prob. 14CRCh. 7.CR - For what values of a does the matrix A=[01a1] have...Ch. 7.CR - Prob. 16CRCh. 7.CR - Writing In Exercises 17-20, explain why the given...Ch. 7.CR - Prob. 18CRCh. 7.CR - Writing In Exercises 17-20, explain why the given...Ch. 7.CR - Prob. 20CRCh. 7.CR - Determine Whether Two Matrices Are Similar In...Ch. 7.CR - Determine Whether Two Matrices Are Similar In...Ch. 7.CR - Determine Whether Two Matrices Are Similar In...Ch. 7.CR - Determine Whether Two Matrices Are Similar In...Ch. 7.CR - Determining Symmetric and Orthogonal Matrices In...Ch. 7.CR - Prob. 26CRCh. 7.CR - Determining Symmetric and Orthogonal Matrices In...Ch. 7.CR - Prob. 28CRCh. 7.CR - Prob. 29CRCh. 7.CR - Determine Symmetric and Orthogonal Matrices In...Ch. 7.CR - Prob. 31CRCh. 7.CR - Prob. 32CRCh. 7.CR - Prob. 33CRCh. 7.CR - Prob. 34CRCh. 7.CR - Prob. 35CRCh. 7.CR - Prob. 36CRCh. 7.CR - Orthogonally Diagonalizable Matrices In Exercises...Ch. 7.CR - Prob. 38CRCh. 7.CR - Orthogonally Diagonalizable Matrices In Exercises...Ch. 7.CR - Prob. 40CRCh. 7.CR - Prob. 41CRCh. 7.CR - Prob. 42CRCh. 7.CR - Prob. 43CRCh. 7.CR - Prob. 44CRCh. 7.CR - Prob. 45CRCh. 7.CR - Orthogonal Diagonalization In Exercises 41-46,...Ch. 7.CR - Prob. 47CRCh. 7.CR - Prob. 48CRCh. 7.CR - Prob. 49CRCh. 7.CR - Prob. 50CRCh. 7.CR - Prob. 51CRCh. 7.CR - Prob. 52CRCh. 7.CR - Steady State Probability Vector In Exercises...Ch. 7.CR - Prob. 54CRCh. 7.CR - Prob. 55CRCh. 7.CR - Prob. 56CRCh. 7.CR - Prob. 57CRCh. 7.CR - Prob. 58CRCh. 7.CR - Prob. 59CRCh. 7.CR - Prob. 60CRCh. 7.CR - Prob. 61CRCh. 7.CR - Prob. 62CRCh. 7.CR - Prob. 63CRCh. 7.CR - a Find a symmetric matrix B such that B2=A for...Ch. 7.CR - Determine all nn symmetric matrices that have 0 as...Ch. 7.CR - Prob. 66CRCh. 7.CR - Prob. 67CRCh. 7.CR - Prob. 68CRCh. 7.CR - Prob. 69CRCh. 7.CR - True or False? In Exercises 69 and 70, determine...Ch. 7.CR - Prob. 71CRCh. 7.CR - Prob. 72CRCh. 7.CR - Prob. 73CRCh. 7.CR - Prob. 74CRCh. 7.CR - Prob. 75CRCh. 7.CR - Prob. 76CRCh. 7.CR - Prob. 77CRCh. 7.CR - Prob. 78CRCh. 7.CR - Prob. 79CRCh. 7.CR - Prob. 80CRCh. 7.CR - Prob. 81CRCh. 7.CR - Prob. 82CRCh. 7.CR - Prob. 83CRCh. 7.CR - Prob. 84CRCh. 7.CR - Prob. 85CRCh. 7.CR - Prob. 86CRCh. 7.CR - Prob. 87CRCh. 7.CR - Prob. 88CRCh. 7.CM - Prob. 1CMCh. 7.CM - In Exercises 1 and 2, determine whether the...Ch. 7.CM - Let T:RnRm be the linear transformation defined by...Ch. 7.CM - Prob. 4CMCh. 7.CM - Find the kernel of the linear transformation...Ch. 7.CM - Let T:R4R2 be the linear transformation defined by...Ch. 7.CM - In Exercises 7-10, find the standard matrix for...Ch. 7.CM - Prob. 8CMCh. 7.CM - Prob. 9CMCh. 7.CM - Prob. 10CMCh. 7.CM - Prob. 11CMCh. 7.CM - Prob. 12CMCh. 7.CM - Prob. 13CMCh. 7.CM - Prob. 14CMCh. 7.CM - Prob. 15CMCh. 7.CM - Prob. 16CMCh. 7.CM - Prob. 17CMCh. 7.CM - Prob. 18CMCh. 7.CM - In Exercises 19-22, find the eigenvalues and the...Ch. 7.CM - Prob. 20CMCh. 7.CM - Prob. 21CMCh. 7.CM - Prob. 22CMCh. 7.CM - In Exercises 23 and 24, find a nonsingular matrix...Ch. 7.CM - In Exercises 23 and 24, find a nonsingular matrix...Ch. 7.CM - Find a basis B for R3 such that the matrix for the...Ch. 7.CM - Find an orthogonal matrix P such that PTAP...Ch. 7.CM - Use the Gram-Schmidt orthonormalization process to...Ch. 7.CM - Prob. 28CMCh. 7.CM - Prob. 29CMCh. 7.CM - Prob. 30CMCh. 7.CM - Prob. 31CMCh. 7.CM - Prove that if A is similar to B and A is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Show that the three points (x1,y1)(x2,y2) and (x3,y3) in the a plane are collinear if and only if the matrix [x1y11x2y21x3y31] has rank less than 3.arrow_forwardFind the kernel of the linear transformation T:R4R4, T(x1,x2,x3,x4)=(x1x2,x2x1,0,x3+x4).arrow_forwardLet T be a linear transformation from R2 into R2 such that T(4,2)=(2,2) and T(3,3)=(3,3). Find T(7,2).arrow_forward
- Let T be a linear transformation T such that T(v)=kv for v in Rn. Find the standard matrix for T.arrow_forwardLet T:P2P3 be the linear transformation T(p)=xp. Find the matrix for T relative to the bases B={1,x,x2} and B={1,x,x2,x3}.arrow_forwardLet T:P2P4 be the linear transformation T(p)=x2p. Find the matrix for T relative to the bases B={1,x,x2} and B={1,x,x2,x3,x4}.arrow_forward
- a) Let T: R² R² be a linear transformation given by T(x, y) = (x+y,x-y). Find the matrix for T relative to the bases B = {(1,1),(1,0)} and B' = {(1,0), (1, 2)}. b) Given the bases B-{(1, 1), (1,0)} and B-{(1,0), (1,2)} of R², find the transition matrix from B to B'. c) Let T: R² R² be a linear transformation given by T(x, y) = (x + y, x - y). Given the bases B = {(1, 1), (1,0)} and B' = {(1,0), (1, 2)} of R², compute [v]B, where v = (2,3). d) Let T: R² R² be a linear transformation given by T(x, y) = (x + y,x-y). Given the bases B = {(1, 1), (1,0)} and B' = {(1,0), (1, 2)} of R², compute [v], where v = (2, 3). e) Let T: R² R² be a linear transformation given by T(x, y) = (x+y,x-y). Given the bases B = {(1, 1), (1,0)} and B' = {(1,0), (1, 2)} of R², compute [T(v)], where v = (2,3).arrow_forwardFind a matrix corresponding to the linear transformation that rotates R clockwise by 45 degrees about the positive y-axis and then rotates the space 150 degrees counterclockwise about the positive z-axis.arrow_forwardFind the matrix of the linear transformation T(x, y) = (y, 2x, x + y) relative to the bases B = {(1, 1), (1, 0)} for R2 and B′ = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} for R3. Use this matrix to find the image of the vector (0, 1).arrow_forward
- Let B = {(1,3), (-2,-2)} and B' = {(-12,0), (-4,4)} be bases for R2, and let A= 4 3 0 2 be the matrix for T: R2 -> R2 relative to Barrow_forwardFind the image of the point (x, y) under the matrix transformation that first reflects the point with respect to the x-axis, then rotates the resulting point about the origin through an angle of T/3, and then reflects the resulting point with respect to the line y = x.arrow_forwardFind linear transformations U, T: F2 --> F2 such that UT =To (the zero transformation) but TU ≠ T0 . Use your answer to find matrices A and B such that AB = 0 but BA ≠ 0.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
College Algebra
Algebra
ISBN:9781305115545
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Linear Transformations on Vector Spaces; Author: Professor Dave Explains;https://www.youtube.com/watch?v=is1cg5yhdds;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY