Diagonalizing a Matrix In Exercise 7-14, find (if possible) a nonsingular matrix P such that
Trending nowThis is a popular solution!
Chapter 7 Solutions
Bundle: Elementary Linear Algebra, Loose-leaf Version, 8th + MindTap Math, 1 term (6 months) Printed Access Card
- Determine a Sufficient Condition for Diagonalization In Exercises 23-26, find the eigenvalues of the matrix and determine there is a sufficient number of eigenvalues to guarantee that the matrix is diagonalizable by Theorem 7.6. [432011002]arrow_forwardDiagonalizing a Matrix In Exercise 7-14, find if possible a nonsingular matrix P such that P1AP is diagonal. Verify thatP1APis a diagonal matrix with the eigenvalues on the main diagonal A=[6321] See Exercise 15, section 7.1. Characteristic Equation, Eigenvalues, and Eigenvectors in Exercise 15-28, find a the characteristics equation and b the eigenvalues and corresponding eigenvectors of the matrix. [6321]arrow_forwardDiagonalizing a Matrix In Exercise 7-14, find if possible a nonsingular matrix P such that P1AP is diagonal. Verify that P1AP is a diagonal matrix with the eigenvalues on the main diagonal A=[122252663] See Exercise 23, section 7.1. Characteristic Equation, Eigenvalues, and EigenvectorsIn Exercise 15-28, find a the characteristics equation and b the eigenvalues and corresponding eigenvectors of the matrix. [122252663]arrow_forward
- True or False? In Exercises 67 and 68, determine whether each statement is true or false. If a statement is true, give a reason or cite an appropriate statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text. a Geometrically, if is an eigenvalue of a matrix A and x is an eigenvector of A corresponding to , then multiplying x by A produce a vector x parallel to x. b If A is nn matrix with an eigenvalue , then the set of all eigenvectors of is a subspace of Rn.arrow_forwardFinding the nullspace of a matrix in exercise 27-40, find the nullspace of the matrix. A=[2163]arrow_forwardDiagonalizable Matrices and Eigenvalues In Exercise 1-6, a verify that A is diagonalizable by finding P1AP, and b use the result of part a and Theorem 7.4 to find the eigenvalues of A. A=[110030425],P=[013040122]arrow_forward
- True or False? In Exercises 37 and 38, determine whether each statement is true or false. If a statement is true, give a reason or cite an appropriate statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text. a If A is a diagonalizable matrix, then it has n linearly independent eigenvectors. b If an nn matrix A is diagonalizable, then it must have n distinct eigenvalues.arrow_forwardProof Prove that if A is an nn matrix, then A-AT is skew-symmetric.arrow_forwardTrue or False? In Exercises 69 and 70, determine whether each statement is true or false. If a statement is true, give a reason or cite an appropriate statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text. a An eigenvalue of a matrix A is a scalar such that det(IA)=0. b An eigenvector may be the zero vector 0. c A matrix A is orthogonally diagonalizable when there exists an orthogonal matrix P such that P1AP=D is diagonal.arrow_forward
- Proof Prove that if A is an nn matrix that is idempotent and invertible, then A=In.arrow_forwardTrue or False? In Exercises 67 and 68, determine whether each statement is true or false. If a statement is true, give a reason or cite an appropriate statement from the text. If a statement is false, provide an example that shows the statement is not true in all cases or cite an appropriate statement from the text. a The scalar is an eigenvalue of an nn matrix A when there exists a vector x such that Ax=x. b To find the eigenvalues of an nn matrix A. you can solve the characteristic equation det(IA)=0.arrow_forwardFinding Eigenvalues and Dimensions of Eigen spaces In Exercises 7-18, find the eigenvalues of the symmetric matrix. For each eigenvalue, find the dimension of the corresponding eigenspace. [022202220]arrow_forward
- Elementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage