Elementary Differential Equations
Elementary Differential Equations
10th Edition
ISBN: 9780470458327
Author: William E. Boyce, Richard C. DiPrima
Publisher: Wiley, John & Sons, Incorporated
bartleby

Videos

Question
Book Icon
Chapter 7.9, Problem 1P
To determine

The general solution of the equation, x=(2132)x+(ett).

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The general solution of x=(2132)x+(ett) is obtained as, x(t)=c1(13)et+c2(11)et+(32t1432t34)et+(12)t(01)(23etet13et+23et)_.

Explanation of Solution

The given system of equations is,

x=(2132)x+(ett)

It is noted that, the given system is a non-homogeneous system.

Consider the homogeneous part. That is,

x=(2132)x

This is of the form, x=Ax, where A=(2132).

The eigenvalues r and the eigenvectors ξ satisfy the equation, |ArI|ξ=0. That is,

|ArI|ξ=0|2r132r|(ξ1ξ2)=(00)(2r)(2r)+3=0r21=0

The roots of the above characteristic equation is obtained as follows.

r21=0r2=1

Thus, the solutions are, r1=1,r2=1. That is, the solutions are real and different.

Set r1=1 in the coefficient matrix. That is,

(2+1132+1)=(3131)

On solving, (3131)(ξ1ξ2)=(00), the following equation is obtained.

3ξ1ξ2=0

Let ξ1=1, then the above equation becomes, ξ2=3.

Then, the eigen vector formed is, ξ=(13).

Thus, the first solution of the homogeneous solution is, ξ(1)=(13)c2et.

Set r2=1 in the coefficient matrix. That is,

(211321)=(1133)

On solving, (1133)(ξ1ξ2)=(00), the following equation is obtained.

ξ1ξ2=0ξ1=ξ2

Let ξ1=1, then from the above equation, ξ2=1.

Then, the eigen vector formed is, ξ=(11).

Thus, the second solution of the homogeneous solution is, ξ(2)=c1(11)et.

Therefore, the matrix T of eigen vectors is,

T=(ξ(1),ξ(2))=(1131)

Then, the inverse of T is, T1=12(1131).

It is noted from the given equation that, g(t)=(ett).

Now consider the equation, x=Ty. Then, the following equation is obtained.

y=Dy+T1g(t)  (1) where, D=(r100r2)

Substitute the eigen values and inverse of T in the equation (1) as follows.

y=Dy+T1g(t)(y1y2)=(1001)(y1y2)12(1131)(ett)

Thus, the following two linear differential equations are obtained.

y1=y112et+12t    (2)y2=y2+32et12t      (3)

Consider the equation (2). The integral factor is,

μ(t)=ep(t)dt=et

Multiply the obtained integral factor throughout the equation (2) and y1 is obtained as,

y1=c1et14et+12t12      (4)

Similarly, multiply the obtained integral factor et throughout the equation (3) and y2 is obtained as,

y2=32tet+12t+12+c2et     (5)

The solution is given by the equation, x=Ty. That is, x(t)=T(y1y2)       (6).

Substitute the obtained solutions in the equation (6) as follows.

x(t)=(1131)(y1y2)=(1131)(c1et14et+12t1232tet+12t+12+c2et)=(c1et14et+12t12+32tet+12t+12+c2et3(c1et14et+12t12)+32tet+12t+12+c2et)=c1(13)et+c2(11)et+(32t1432t34)et+(12)t(01)

Therefore, the general solution of x=(2132)x+(ett) is obtained as, x(t)=c1(13)et+c2(11)et+(32t1432t34)et+(12)t(01)(23etet13et+23et)_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Find the closed formula for each of the following sequences (a_n)_n>=1 by realting them to a well known sequence. Assume the first term given is a_1 d. 5,23,119,719,5039 i have tried finding the differnces and the second difference and i still dont see the pattern
You manage a chemical company with 2 warehouses. The following quantities of Important Chemical A have arrived from an international supplier at 3 different ports: Chemical Available (L) Port 1 Port 2 Port 3 400 110 100 The following amounts of Important Chemical A are required at your warehouses: Warehouse 1 Warehouse 2 Chemical Required (L) 380 230 The cost in £ to ship 1L of chemical from each port to each warehouse is as follows: Warehouse 1 Warehouse 2 Port 1 £10 £45 Port 2 £20 £28 Port 3 £13 £11 (a) You want to know how to send these shipments as cheaply as possible. For- mulate this as a linear program (you do not need to formulate it in standard inequality form) indicating what each variable represents.
a) Suppose that we are carrying out the 1-phase simplex algorithm on a linear program in standard inequality form (with 3 variables and 4 constraints) and suppose that we have reached a point where we have obtained the following tableau. Apply one more pivot operation, indicating the highlighted row and column and the row operations you carry out. What can you conclude from your updated tableau? x1 12 23 81 82 83 S4 $1 -20 1 1 0 0 0 3 82 3 0 -2 0 1 2 0 6 12 1 1 -3 0 0 1 0 2 84 -3 0 2 0 0 -1 1 4 2 -2 0 11 0 0 -4 0 -8 b) Solve the following linear program using the 2-phase simplex algorithm. You should give the initial tableau and each further tableau produced during the execution of the algorithm. If the program has an optimal solution, give this solution and state its objective value. If it does not have an optimal solution, say why. maximize 21 - - 2x2 + x3 - 4x4 subject to 2x1+x22x3x4≥ 1, 5x1+x2-x3-4 -1, 2x1+x2-x3-342, 1, 2, 3, 4 ≥0.

Chapter 7 Solutions

Elementary Differential Equations

Ch. 7.1 - Prob. 11PCh. 7.1 - Prob. 12PCh. 7.1 - Prob. 13PCh. 7.1 - Prob. 14PCh. 7.1 - Prob. 15PCh. 7.1 - Prob. 16PCh. 7.1 - Prob. 17PCh. 7.1 - Prob. 18PCh. 7.1 - Consider the circuit shown in Figure 7.1.2. Let...Ch. 7.1 - Prob. 20PCh. 7.1 - Prob. 21PCh. 7.1 - Prob. 22PCh. 7.1 - Prob. 23PCh. 7.2 - Prob. 1PCh. 7.2 - Prob. 2PCh. 7.2 - Prob. 3PCh. 7.2 - Prob. 4PCh. 7.2 - Prob. 5PCh. 7.2 - Prob. 6PCh. 7.2 - Prob. 7PCh. 7.2 - Prob. 8PCh. 7.2 - Prob. 9PCh. 7.2 - Prob. 10PCh. 7.2 - Prob. 11PCh. 7.2 - Prob. 12PCh. 7.2 - Prob. 13PCh. 7.2 - Prob. 14PCh. 7.2 - Prob. 15PCh. 7.2 - Prob. 16PCh. 7.2 - Prob. 17PCh. 7.2 - Prob. 18PCh. 7.2 - Prob. 19PCh. 7.2 - Prob. 20PCh. 7.2 - Prob. 21PCh. 7.2 - Prob. 22PCh. 7.2 - Prob. 23PCh. 7.2 - Prob. 24PCh. 7.2 - Prob. 25PCh. 7.2 - Prob. 26PCh. 7.3 - In each of Problems 1 through 6, either solve the...Ch. 7.3 - In each of Problems 1 through 6, either solve the...Ch. 7.3 - Prob. 3PCh. 7.3 - Prob. 4PCh. 7.3 - Prob. 5PCh. 7.3 - Prob. 6PCh. 7.3 - Prob. 7PCh. 7.3 - Prob. 8PCh. 7.3 - Prob. 9PCh. 7.3 - Prob. 10PCh. 7.3 - Prob. 11PCh. 7.3 - Prob. 12PCh. 7.3 - Prob. 13PCh. 7.3 - Prob. 14PCh. 7.3 - Prob. 15PCh. 7.3 - Prob. 16PCh. 7.3 - Prob. 17PCh. 7.3 - Prob. 18PCh. 7.3 - Prob. 19PCh. 7.3 - Prob. 20PCh. 7.3 - Prob. 21PCh. 7.3 - Prob. 22PCh. 7.3 - Prob. 23PCh. 7.3 - Prob. 24PCh. 7.3 - Prob. 25PCh. 7.3 - Prob. 26PCh. 7.3 - Prob. 27PCh. 7.3 - Prob. 28PCh. 7.3 - Prob. 29PCh. 7.3 - Prob. 31PCh. 7.3 - Prob. 32PCh. 7.3 - Prob. 33PCh. 7.3 - Prob. 34PCh. 7.4 - Prove the generalization of Theorem 7.4.1, as...Ch. 7.4 - Prob. 2PCh. 7.4 - Prob. 3PCh. 7.4 - Prob. 4PCh. 7.4 - Prob. 5PCh. 7.4 - Prob. 6PCh. 7.4 - Prob. 7PCh. 7.4 - Prob. 8PCh. 7.4 - Prob. 9PCh. 7.5 - In each of Problems 1 through 6: Find the general...Ch. 7.5 - Prob. 2PCh. 7.5 - Prob. 3PCh. 7.5 - In each of Problems 1 through 6: Find the general...Ch. 7.5 - Prob. 5PCh. 7.5 - Prob. 6PCh. 7.5 - Prob. 7PCh. 7.5 - Prob. 8PCh. 7.5 - Prob. 9PCh. 7.5 - Prob. 10PCh. 7.5 - Prob. 11PCh. 7.5 - Prob. 12PCh. 7.5 - Prob. 13PCh. 7.5 - In each of Problems 9 through 14, find the general...Ch. 7.5 - Prob. 15PCh. 7.5 - Prob. 16PCh. 7.5 - Prob. 17PCh. 7.5 - Prob. 18PCh. 7.5 - Prob. 19PCh. 7.5 - Prob. 20PCh. 7.5 - Prob. 21PCh. 7.5 - Prob. 22PCh. 7.5 - Prob. 23PCh. 7.5 - Prob. 24PCh. 7.5 - Prob. 25PCh. 7.5 - Prob. 26PCh. 7.5 - Prob. 27PCh. 7.5 - Prob. 28PCh. 7.5 - Prob. 29PCh. 7.5 - Prob. 30PCh. 7.5 - Prob. 31PCh. 7.5 - Prob. 32PCh. 7.5 - Prob. 33PCh. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - Prob. 2PCh. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - Prob. 4PCh. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - In each of Problems 1 through 6: Express the...Ch. 7.6 - Prob. 7PCh. 7.6 - Prob. 8PCh. 7.6 - In each of Problems 9 and 10, find the solution of...Ch. 7.6 - Prob. 10PCh. 7.6 - Prob. 11PCh. 7.6 - Prob. 12PCh. 7.6 - Prob. 13PCh. 7.6 - Prob. 14PCh. 7.6 - Prob. 15PCh. 7.6 - Prob. 16PCh. 7.6 - Prob. 17PCh. 7.6 - Prob. 18PCh. 7.6 - Prob. 19PCh. 7.6 - Prob. 20PCh. 7.6 - Prob. 21PCh. 7.6 - Prob. 22PCh. 7.6 - Prob. 23PCh. 7.6 - Prob. 24PCh. 7.6 - Prob. 25PCh. 7.6 - Prob. 26PCh. 7.6 - Prob. 27PCh. 7.6 - Prob. 28PCh. 7.6 - Prob. 29PCh. 7.7 - In each of Problems 1 through 10: Find a...Ch. 7.7 - Prob. 2PCh. 7.7 - Prob. 3PCh. 7.7 - Prob. 4PCh. 7.7 - Prob. 5PCh. 7.7 - Prob. 6PCh. 7.7 - Prob. 7PCh. 7.7 - Prob. 8PCh. 7.7 - Prob. 9PCh. 7.7 - Prob. 10PCh. 7.7 - Prob. 11PCh. 7.7 - Prob. 12PCh. 7.7 - Prob. 13PCh. 7.7 - Prob. 14PCh. 7.7 - Prob. 15PCh. 7.7 - Prob. 16PCh. 7.7 - Prob. 17PCh. 7.7 - Prob. 18PCh. 7.8 - Prob. 1PCh. 7.8 - Prob. 2PCh. 7.8 - Prob. 3PCh. 7.8 - Prob. 4PCh. 7.8 - Prob. 5PCh. 7.8 - Prob. 6PCh. 7.8 - Prob. 7PCh. 7.8 - Prob. 8PCh. 7.8 - Prob. 9PCh. 7.8 - Prob. 10PCh. 7.8 - Prob. 13PCh. 7.8 - Prob. 14PCh. 7.8 - Prob. 15PCh. 7.8 - Prob. 16PCh. 7.8 - Prob. 17PCh. 7.8 - Prob. 18PCh. 7.8 - Prob. 19PCh. 7.8 - Prob. 20PCh. 7.8 - Prob. 21PCh. 7.8 - Prob. 22PCh. 7.9 - Prob. 1PCh. 7.9 - In each of Problems 1 through 12 find the general...Ch. 7.9 - Prob. 3PCh. 7.9 - Prob. 4PCh. 7.9 - Prob. 5PCh. 7.9 - In each of Problems 1 through 12 find the general...Ch. 7.9 - Prob. 7PCh. 7.9 - Prob. 8PCh. 7.9 - Prob. 9PCh. 7.9 - Prob. 10PCh. 7.9 - In each of Problems 1 through 12 find the general...Ch. 7.9 - Prob. 12PCh. 7.9 - Prob. 13PCh. 7.9 - Prob. 14PCh. 7.9 - Prob. 15PCh. 7.9 - Prob. 16PCh. 7.9 - Prob. 17PCh. 7.9 - Prob. 18P
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Advanced Engineering Mathematics
Advanced Math
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Wiley, John & Sons, Incorporated
Text book image
Numerical Methods for Engineers
Advanced Math
ISBN:9780073397924
Author:Steven C. Chapra Dr., Raymond P. Canale
Publisher:McGraw-Hill Education
Text book image
Introductory Mathematics for Engineering Applicat...
Advanced Math
ISBN:9781118141809
Author:Nathan Klingbeil
Publisher:WILEY
Text book image
Mathematics For Machine Technology
Advanced Math
ISBN:9781337798310
Author:Peterson, John.
Publisher:Cengage Learning,
Text book image
Basic Technical Mathematics
Advanced Math
ISBN:9780134437705
Author:Washington
Publisher:PEARSON
Text book image
Topology
Advanced Math
ISBN:9780134689517
Author:Munkres, James R.
Publisher:Pearson,
UG/ linear equation in linear algebra; Author: The Gate Academy;https://www.youtube.com/watch?v=aN5ezoOXX5A;License: Standard YouTube License, CC-BY
System of Linear Equations-I; Author: IIT Roorkee July 2018;https://www.youtube.com/watch?v=HOXWRNuH3BE;License: Standard YouTube License, CC-BY