Essential Organic Chemistry (3rd Edition)
Essential Organic Chemistry (3rd Edition)
3rd Edition
ISBN: 9780321937711
Author: Paula Yurkanis Bruice
Publisher: PEARSON
bartleby

Concept explainers

Question
Book Icon
Chapter 7.9, Problem 13P

(a)

Interpretation Introduction

Interpretation:

For the given species identify whether it withdraw electrons inductively or donates electrons by hyper conjugation, withdraws electrons by resonance or donates electrons by resonance.

Concept Introduction:

Electronic effect:

Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond).  Electron withdrawal increases acidity.  Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.

Rule: The strength of a base depends on the stability of its conjugate acid.

(b)

Interpretation Introduction

Interpretation:

For the given species identify whether it withdraw electrons inductively or donates electrons by hyper conjugation, withdraws electrons by resonance or donates electrons by resonance.

Concept Introduction:

Electronic effect:

Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond).  Electron withdrawal increases acidity.  Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.

Rule: The strength of a base depends on the stability of its conjugate acid.

(c)

Interpretation Introduction

Interpretation:

For the given species identify whether it withdraw electrons inductively or donates electrons by hyper conjugation, withdraws electrons by resonance or donates electrons by resonance.

Concept Introduction:

Electronic effect:

Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond). Electron withdrawal increases acidity.  Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.

Rule: The strength of a base depends on the stability of its conjugate acid.

(d)

Interpretation Introduction

Interpretation:

For the given species identify whether it withdraw electrons inductively or donates electrons by hyper conjugation, withdraws electrons by resonance or donates electrons by resonance.

Concept Introduction:

Electronic effect:

Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond).  Electron withdrawal increases acidity.  Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.

Rule: The strength of a base depends on the stability of its conjugate acid.

(e)

Interpretation Introduction

Interpretation:

For the given species identify whether it withdraw electrons inductively or donates electrons by hyper conjugation, withdraws electrons by resonance or donates electrons by resonance.

Concept Introduction:

Electronic effect:

Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond).  Electron withdrawal increases acidity.  Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.

Rule: The strength of a base depends on the stability of its conjugate acid.

(f)

Interpretation Introduction

Interpretation:

For the given species identify whether it withdraw electrons inductively or donates electrons by hyper conjugation, withdraws electrons by resonance or donates electrons by resonance.

Concept Introduction:

Electronic effect:

Electron donating groups decreases acidity by inductive effect (withdrawal of electrons through a sigma bond).  Electron withdrawal increases acidity.  Electron-donating substituents destabilize a base, and decrease the strength of its conjugate acid; electron-withdrawing substituents stabilize a base, which increase the strength of its conjugate base.

Rule: The strength of a base depends on the stability of its conjugate acid.

Blurred answer
Students have asked these similar questions
1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. 2600 2400 2200 2000 1800 1600 1400 1200 1000 800 Potential Energy (kJ) 600 400 200 0 -200- -400 -600- -800 (i) Cl₂ (g) + Pt(s) → 2Cl (g) + Pt(s) (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) Ea = 1550 kJ Ea = 2240 kJ (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2350 kJ AH=-950 kJ ΔΗ = 575 ΚΙ AH=-825 kJ a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ Reaction Progress b. What is the overall chemical equation? c. What is the overall change in enthalpy for the above chemical reaction? d. What is the overall amount of activation energy for the above chemical reaction? e. Which reaction intermediate would be considered a catalyst (if any) and why? f. If you were to add 2700kJ of energy to the reaction (e.g. 2700 kl of heat or electricity), would you be able to make the reaction reverse itself (i.e. have…
draw the enolate anion and the carbonyl that would be needed to make this product through an aldol addition reaction.
Draw the Michael Adduct and the final product of the Robinson annulation reaction. Ignore inorganic byproducts.

Chapter 7 Solutions

Essential Organic Chemistry (3rd Edition)

Ch. 7.8 - Which member of each pair is the stronger base? a....Ch. 7.9 - Prob. 13PCh. 7.9 - Which species in each of the following pairs is...Ch. 7.9 - Prob. 16PCh. 7.11 - Prob. 18PCh. 7.11 - Prob. 19PCh. 7.11 - Prob. 20PCh. 7.11 - Prob. 21PCh. 7.11 - Prob. 22PCh. 7.12 - Prob. 23PCh. 7.12 - Prob. 24PCh. 7.15 - Prob. 25PCh. 7.15 - Which of the following are aromatic? A...Ch. 7.17 - Prob. 29PCh. 7.17 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Which of the compounds in each of the following...Ch. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Which species in each of the pairs in Problem 45...Ch. 7 - Rank the following anions in order from most basic...Ch. 7 - a. Which oxygen atom has the greater electron...Ch. 7 - Prob. 49PCh. 7 - Which compound is the strongest base?Ch. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - a. Which dienophile in each pair is more reactive...Ch. 7 - Prob. 57PCh. 7 - Draw the product of each of the following...Ch. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - a. In what direction is the dipole moment in...Ch. 7 - Propose a mechanism for each of the following...Ch. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12P
Knowledge Booster
Background pattern image
Chemistry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Organic Chemistry: A Guided Inquiry
Chemistry
ISBN:9780618974122
Author:Andrei Straumanis
Publisher:Cengage Learning