
Chemistry Atoms First, Second Edition
2nd Edition
ISBN: 9781308211657
Author: Burdge
Publisher: McGraw Hill
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.8, Problem 7.8.4SR
Interpretation Introduction
Interpretation:
The theory or concept that explains the Para magnetism of
Concept introduction:
Molecular orbital (MO) theory:
- The atomic orbitals of the atoms constituted in a molecule are combined to produce new orbitals are called Molecular Orbitals.
- Like atomic orbitals, a molecular orbital can accommodate maximum two electrons and the two electrons must have opposite spins (Pauli Exclusion Principle).
- Relative energy levels of molecules are according to the energy levels of atomic orbitals.
Paramagnetic species have one or more unpaired electrons in their molecular orbitals.
Diamagnetic species have no unpaired electrons in the molecular orbitals.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
What is the IUPAC name of the following compound?
OH
(2S, 4R)-4-chloropentan-2-ol
O (2R, 4R)-4-chloropentan-2-ol
O (2R, 4S)-4-chloropentan-2-ol
O(2S, 4S)-4-chloropentan-2-ol
In the answer box, type the number of maximum stereoisomers possible for the
following compound.
A
H
H
COH
OH
=
H
C
Br
H.C
OH
CH
Select the major product of the following reaction.
Br
Br₂, light
D
Br
Br
Br
Br
Chapter 7 Solutions
Chemistry Atoms First, Second Edition
Ch. 7.1 - Determine the shapes of (a) SO3 and (b) ICl4.Ch. 7.1 - Determine the shapes of (a) CO2 and (b) SCl2.Ch. 7.1 - (a) From what group must the terminal atoms come...Ch. 7.1 - These four models may represent molecules or...Ch. 7.1 - Acetic acid, the substance that gives vinegar its...Ch. 7.1 - Ethanolamine (HOCH2CH2NH2) has a smell similar to...Ch. 7.1 - The bond angle in NH3 is significantly smaller...Ch. 7.1 - Which of these models represents a species in...Ch. 7.1 - Prob. 7.1.1SRCh. 7.1 - Prob. 7.1.2SR
Ch. 7.1 - Prob. 7.1.3SRCh. 7.1 - Prob. 7.1.4SRCh. 7.2 - Prob. 7.3WECh. 7.2 - Prob. 3PPACh. 7.2 - For each of the following hypothetical molecules,...Ch. 7.2 - Which of these models could represent a polar...Ch. 7.2 - Prob. 7.2.1SRCh. 7.2 - Prob. 7.2.2SRCh. 7.3 - Prob. 7.4WECh. 7.3 - Prob. 4PPACh. 7.3 - Prob. 4PPBCh. 7.3 - Prob. 4PPCCh. 7.3 - Prob. 7.3.1SRCh. 7.3 - Prob. 7.3.2SRCh. 7.4 - Hydrogen selenide (H2Se) is a foul-smelling gas...Ch. 7.4 - Prob. 5PPACh. 7.4 - For which molecule(s) can we not use valence bond...Ch. 7.4 - Which of these models could represent a species...Ch. 7.4 - Prob. 7.4.1SRCh. 7.4 - Prob. 7.4.2SRCh. 7.5 - Prob. 7.6WECh. 7.5 - Use hybrid orbital theory to describe the bonding...Ch. 7.5 - Prob. 6PPBCh. 7.5 - Prob. 6PPCCh. 7.5 - Prob. 7.5.1SRCh. 7.5 - Prob. 7.5.2SRCh. 7.6 - Thalidomide (C13H10N2O4) is a sedative and...Ch. 7.6 - The active ingredient in Tylenol and a host of...Ch. 7.6 - Determine the total number of sigma and pi bonds...Ch. 7.6 - In terms of valence bond theory and hybrid...Ch. 7.6 - In addition to its rise in aqueous solution as a...Ch. 7.6 - Use valence bond theory and hybrid orbitals to...Ch. 7.6 - Use valence bond theory and hybrid orbitals to...Ch. 7.6 - Explain why hybrid orbitals are necessary to...Ch. 7.6 - Prob. 7.6.1SRCh. 7.6 - Prob. 7.6.2SRCh. 7.6 - Prob. 7.6.3SRCh. 7.6 - Prob. 7.6.4SRCh. 7.7 - Prob. 7.9WECh. 7.7 - Use molecular orbital theory to determine whether...Ch. 7.7 - Use molecular orbital theory to determine whether...Ch. 7.7 - For most of the homonuclear diatomic species shown...Ch. 7.7 - Prob. 7.7.1SRCh. 7.7 - Prob. 7.7.2SRCh. 7.7 - Prob. 7.7.3SRCh. 7.7 - Prob. 7.7.4SRCh. 7.8 - It takes three resonance structures to represent...Ch. 7.8 - Use a combination of valence bond theory and...Ch. 7.8 - Use a combination of valence bond theory and...Ch. 7.8 - Prob. 10PPCCh. 7.8 - Prob. 7.8.1SRCh. 7.8 - Prob. 7.8.2SRCh. 7.8 - Prob. 7.8.3SRCh. 7.8 - Prob. 7.8.4SRCh. 7 - Prob. 7.1QPCh. 7 - Sketch the shape of a linear triatomic molecule, a...Ch. 7 - Prob. 7.3QPCh. 7 - Prob. 7.4QPCh. 7 - In the trigonal bipyramidal arrangement, why does...Ch. 7 - Prob. 7.6QPCh. 7 - Predict the geometry of the following molecules...Ch. 7 - Prob. 7.8QPCh. 7 - Predict the geometries of the following species...Ch. 7 - Predict the geometries of the following ions: (a)...Ch. 7 - Prob. 7.11QPCh. 7 - Prob. 7.12QPCh. 7 - Prob. 7.13QPCh. 7 - Describe the geometry about each of the central...Ch. 7 - Prob. 7.15QPCh. 7 - Prob. 7.16QPCh. 7 - Prob. 7.17QPCh. 7 - Prob. 7.18QPCh. 7 - Prob. 7.19QPCh. 7 - Prob. 7.20QPCh. 7 - Prob. 7.21QPCh. 7 - Prob. 7.22QPCh. 7 - Explain the term polarizability. What kind of...Ch. 7 - Prob. 7.24QPCh. 7 - What physical properties are determined by the...Ch. 7 - Prob. 7.26QPCh. 7 - Describe the types of intermolecular forces that...Ch. 7 - The compounds Br2 and ICl are isoelectronic (have...Ch. 7 - If you lived in Alaska, which of the following...Ch. 7 - The binary hydrogen compounds of the Group 4A...Ch. 7 - List the types of intermolecular forces that exist...Ch. 7 - Prob. 7.32QPCh. 7 - Prob. 7.33QPCh. 7 - Prob. 7.34QPCh. 7 - Diethyl ether has a boiling point of 34.5C, and...Ch. 7 - Prob. 7.36QPCh. 7 - Which substance in each of the following pairs...Ch. 7 - Prob. 7.38QPCh. 7 - What kind of attractive forces must be overcome to...Ch. 7 - Prob. 7.40QPCh. 7 - Prob. 7.41QPCh. 7 - The following compounds have the same molecular...Ch. 7 - Prob. 7.43QPCh. 7 - Prob. 7.44QPCh. 7 - Use valence bond theory to explain the bonding in...Ch. 7 - Prob. 7.46QPCh. 7 - Prob. 7.47QPCh. 7 - Prob. 7.48QPCh. 7 - Prob. 7.49QPCh. 7 - What is the hybridization of atomic orbitals? Why...Ch. 7 - Prob. 7.51QPCh. 7 - Prob. 7.52QPCh. 7 - Prob. 7.53QPCh. 7 - Describe the bonding scheme of the AsH3 molecule...Ch. 7 - Prob. 7.55QPCh. 7 - Prob. 7.56QPCh. 7 - Describe the hybridization of phosphorus in PF5.Ch. 7 - Prob. 7.58QPCh. 7 - Prob. 7.59QPCh. 7 - Prob. 7.1VCCh. 7 - Prob. 7.2VCCh. 7 - Prob. 7.3VCCh. 7 - Prob. 7.4VCCh. 7 - Prob. 7.60QPCh. 7 - Which of the following pairs of atomic orbitals of...Ch. 7 - Prob. 7.62QPCh. 7 - Prob. 7.63QPCh. 7 - Prob. 7.64QPCh. 7 - Prob. 7.65QPCh. 7 - Prob. 7.66QPCh. 7 - Prob. 7.67QPCh. 7 - Prob. 7.68QPCh. 7 - Benzo[a]pyrene is a potent carcinogen found in...Ch. 7 - What is molecular orbital theory? How does it...Ch. 7 - Define the following terms: bonding molecular...Ch. 7 - Prob. 7.72QPCh. 7 - Prob. 7.73QPCh. 7 - Prob. 7.74QPCh. 7 - Prob. 7.75QPCh. 7 - Draw a molecular orbital energy level diagram for...Ch. 7 - Prob. 7.77QPCh. 7 - Prob. 7.78QPCh. 7 - Prob. 7.79QPCh. 7 - Acetylene (C2H2) has a tendency to lose two...Ch. 7 - Compare the Lewis and molecular orbital treatments...Ch. 7 - Prob. 7.82QPCh. 7 - Prob. 7.83QPCh. 7 - Prob. 7.84QPCh. 7 - Prob. 7.85QPCh. 7 - Draw the molecular orbital diagram for the cyanide...Ch. 7 - Given that BeO is diamagnetic, use a molecular...Ch. 7 - Prob. 7.88QPCh. 7 - Prob. 7.89QPCh. 7 - Both ethylene (C2H4) and benzene (C6H6) contain...Ch. 7 - Chemists often represent benzene with the...Ch. 7 - Determine which of these molecules has a more...Ch. 7 - Nitryl fluoride (FNO2) is used in rocket...Ch. 7 - Describe the bonding in the nitrate ion NO3 in...Ch. 7 - Prob. 7.95QPCh. 7 - Prob. 7.96QPCh. 7 - Prob. 7.97QPCh. 7 - Prob. 7.98QPCh. 7 - Prob. 7.99QPCh. 7 - Antimony pentafluoride (SbF5) combines with XeF4...Ch. 7 - Prob. 7.101QPCh. 7 - The molecular model of nicotine (a stimulant) is...Ch. 7 - Predict the bond angles for the following...Ch. 7 - The germanium pentafluoride anion (GeF5) has been...Ch. 7 - Draw Lewis structures and give the other...Ch. 7 - Which figure best illustrates the hybridization of...Ch. 7 - Prob. 7.107QPCh. 7 - Prob. 7.108QPCh. 7 - Prob. 7.109QPCh. 7 - Prob. 7.110QPCh. 7 - Prob. 7.111QPCh. 7 - Cyclopropane (C3H6) has the shape of a triangle in...Ch. 7 - The compound 1,2-dichloroethane (C2H4Cl2) is...Ch. 7 - Prob. 7.114QPCh. 7 - Prob. 7.115QPCh. 7 - Prob. 7.116QPCh. 7 - Prob. 7.117QPCh. 7 - Prob. 7.118QPCh. 7 - The amino acid selenocysteine is one of the...Ch. 7 - Prob. 7.120QPCh. 7 - Prob. 7.121QPCh. 7 - Prob. 7.122QPCh. 7 - Gaseous or highly volatile liquid anesthetics are...Ch. 7 - Prob. 7.124QPCh. 7 - Prob. 7.125QPCh. 7 - Two of the drugs that are prescribed for the...Ch. 7 - Prob. 7.127QPCh. 7 - Prob. 7.128QPCh. 7 - The BO+ ion is paramagnetic. Determine (a) whether...Ch. 7 - Use molecular orbital theory to explain the...Ch. 7 - Which best illustrates the change in geometry...Ch. 7 - Prob. 7.132QPCh. 7 - Prob. 7.133QPCh. 7 - Aluminum trichloride (AlCl3) is an...Ch. 7 - Prob. 7.135QPCh. 7 - Prob. 7.136QPCh. 7 - Prob. 7.137QPCh. 7 - Consider an N2 molecule in its first excited...Ch. 7 - The Lewis structure for O2 is Use molecular...Ch. 7 - Draw the Lewis structure of ketene (C2H2O) and...Ch. 7 - The compound TCDD, or...Ch. 7 - Name the kinds of attractive forces that must be...Ch. 7 - Carbon monoxide (CO) is a poisonous compound due...Ch. 7 - Prob. 7.144QPCh. 7 - Prob. 7.145QPCh. 7 - Prob. 7.146QPCh. 7 - Prob. 7.147QPCh. 7 - Prob. 7.148QPCh. 7 - Prob. 7.1KSPCh. 7 - Which of the following species does not have...Ch. 7 - Prob. 7.3KSPCh. 7 - Prob. 7.4KSP
Knowledge Booster
Similar questions
- Select all molecules which are chiral. Brarrow_forwardUse the reaction coordinate diagram to answer the below questions. Type your answers into the answer box for each question. (Watch your spelling) Energy A B C D Reaction coordinate E A) Is the reaction step going from D to F endothermic or exothermic? A F G B) Does point D represent a reactant, product, intermediate or transition state? A/ C) Which step (step 1 or step 2) is the rate determining step? Aarrow_forward1. Using radii from Resource section 1 (p.901) and Born-Lande equation, calculate the lattice energy for PbS, which crystallizes in the NaCl structure. Then, use the Born-Haber cycle to obtain the value of lattice energy for PbS. You will need the following data following data: AH Pb(g) = 196 kJ/mol; AHƒ PbS = −98 kJ/mol; electron affinities for S(g)→S¯(g) is -201 kJ/mol; S¯(g) (g) is 640kJ/mol. Ionization energies for Pb are listed in Resource section 2, p.903. Remember that enthalpies of formation are calculated beginning with the elements in their standard states (S8 for sulfur). The formation of S2, AHF: S2 (g) = 535 kJ/mol. Compare the two values, and explain the difference. (8 points)arrow_forward
- In the answer box, type the number of maximum stereoisomers possible for the following compound. A H H COH OH = H C Br H.C OH CHarrow_forward7. Magnesium is found in nature in the form of carbonates and sulfates. One of the major natural sources of zinc is zinc blende (ZnS). Use relevant concepts of acid-base theory to explain this combination of cations and anions in these minerals. (2 points)arrow_forward6. AlF3 is insoluble in liquid HF but dissolves if NaF is present. When BF3 is added to the solution, AlF3 precipitates. Write out chemical processes and explain them using the principles of Lewis acid-base theory. (6 points)arrow_forward
- 5. Zinc oxide is amphoteric. Write out chemical reactions for dissolution of ZnO in HCl(aq) and in NaOH(aq). (3 points)arrow_forwardDraw the product(s) formed when alkene A is reacted with ozone, followed by Zn and H₂O. If no second product is formed, do not draw a structure in the second box. Higher Molecular Weight Product A Lower Molecular Weight Product draw structure ... draw structure ...arrow_forwardDraw the product of the following Sharpless epoxidation, including stereochemistry. Click the "draw structure" button to launch the drawing utility. -OH (CH3)3C-OOH Ti[OCH(CH3)2]4 (+)-DET draw structure ... Guidarrow_forwardWhat alkyne (or diyne) yields the following oxidative cleavage products? Click the "draw structure" button to launch the drawing utility. draw structure ... CO₂ + OHarrow_forwardlighting discharges in the atmosphere catalyze the conversion of nitrogen to nitric oxide. How many grams of nitrogen would be required to make 25.0 g of nitric oxide in this way ?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY