Concept explainers
Use the elimination method in Exercises 55 – 58 to find an equilibrium point for the described supply-demand situation. You may assume that the supply and demand equations are both linear.
Supply and demand-housing. In doing a low-income housing survey, the local chamber of commerce found that if an apartment rents $400 per month, there were only 275 available; however, when the rental price rose to $550 per month, the supply increased to 350. In contrast, at a rental price of $400 per month, there was a demand for 450 units, but when the rental price increased to $550 per month, the demand dropped to only 200 units. Find the monthly rental price at which the number of apartments demanded and the number of apartments supplied will be equal.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
Mathematics All Around (6th Edition)
- Please help ASAP on all asked questions. Please show all work and steps. Please circle the final answer.arrow_forward8d6 عدد انباء Q/ Design a rectangular foo A ing of B-2.75m to support a column of dimensions (0.46 x 0.46) m, dead load =1300kN, live load = 1300kN, qa-210kPa, fc' 21 MPa, fy- 400 MPa. =arrow_forward5 of 5 (i) Let a discrete sample space be given by Ω = {ω1, 2, 3, 4}, Total marks 12 and let a probability measure P on be given by P(w1) 0.2, P(w2) = 0.2, P(w3) = 0.5, P(w4) = 0.1. = Consider the random variables X1, X2 → R defined by X₁(w3) = 1, X₁(4) = 1, X₁(w₁) = 1, X₁(w2) = 2, X2(w1) = 2, X2(w2) = 2, X2(W3) = 1, X2(w4) = 2. Find the joint distribution of X1, X2. (ii) [4 Marks] Let Y, Z be random variables on a probability space (N, F, P). Let the random vector (Y, Z) take on values in the set [0,1] × [0,2] and let the joint distribution of Y, Z on [0,1] × [0,2] be given by 1 dPy,z(y, z) (y²z + y²²) dy dz. Find the distribution Py of the random variable Y. [8 Marks]arrow_forward
- Refer to page 40 for solving a time-optimal control problem. Instructions: • Formulate the problem by minimizing the time to reach a target state. • Apply Pontryagin's Maximum Principle to derive the optimal control and switching conditions. • Solve explicitly for the control and state trajectories. Include clear diagrams to visualize the solution. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardQ1/ Two plate load tests were conducted in a C-0 soil as given belo Determine the required size of a footing to carry a load of 1250 kN for the same settlement of 30 mm. Size of plates (m) Load (KN) Settlement (mm) 0.3 x 0.3 40 30 0.6 x 0.6 100 30 Qx 0.6zarrow_forwardTotal marks 16 5. Let (,,P) be a probability space and let X : → R be a random variable whose probability density function is given by f(x) = }}|x|e¯|×| for x Є R. (i) (ii) Find the characteristic function of the random variable X. [8 Marks] Using the result of (i), calculate the first two moments of the random variable X, i.e., E(X") for n = 1, 2. (iii) What is the variance of X? [6 Marks] [2 Marks]arrow_forward
- Refer to page 12 for a problem on solving a homogeneous differential equation. Instructions: • Simplify the equation into a homogeneous form. Use appropriate substitutions to reduce complexity. Solve systematically and verify the final result with clear back-substitutions. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 36 for solving a bang-bang control problem. Instructions: • Formulate the problem, identifying the control constraints. • • Apply Pontryagin's Maximum Principle to derive the switching conditions. Clearly illustrate the switching points in the control trajectory. Verify the solution satisfies the optimality criteria. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardTotal marks 16 5. Let (N,F,P) be a probability space and let X : N → R be a random variable such that the probability density function is given by f(x)=ex for x € R. (i) Find the characteristic function of the random variable X. [8 Marks] (ii) Using the result of (i), calculate the first two moments of the random variable X, i.e., E(X") for n = 1,2. (iii) What is the variance of X. [6 Marks] [2 Marks]arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education