The data can be modeled by
in which f(x} and g(x) represent the average cost of roomand hoard at public four-year colleges in the school year endingx years after 201b. Use these functions: to solve Exercises 33-34.
Where necessary, round answers to the nearest whole dollar.
34. a. According to the linear node], what was the averagecost of loom and board al public four-year colleges for the school year ending in 2015?
b. According to the exponential model, what was theaverage cost of room and board at public four-yearcolleges for the school year ending in 2015? $7629
c. Which function is a better model for the data for theschool year ending in 2015? the $$$ model
The data in the following table indicate that between the ages ofI and 11, the human brain does not grow linearly, or steadily. Ascatter pint for the data is shown to the right of the table.
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
THINKING MATHEMATICALLY W/ACCESS
- Please help ASAP on all asked questions. Please show all work and steps. Please circle the final answer.arrow_forward8d6 عدد انباء Q/ Design a rectangular foo A ing of B-2.75m to support a column of dimensions (0.46 x 0.46) m, dead load =1300kN, live load = 1300kN, qa-210kPa, fc' 21 MPa, fy- 400 MPa. =arrow_forward5 of 5 (i) Let a discrete sample space be given by Ω = {ω1, 2, 3, 4}, Total marks 12 and let a probability measure P on be given by P(w1) 0.2, P(w2) = 0.2, P(w3) = 0.5, P(w4) = 0.1. = Consider the random variables X1, X2 → R defined by X₁(w3) = 1, X₁(4) = 1, X₁(w₁) = 1, X₁(w2) = 2, X2(w1) = 2, X2(w2) = 2, X2(W3) = 1, X2(w4) = 2. Find the joint distribution of X1, X2. (ii) [4 Marks] Let Y, Z be random variables on a probability space (N, F, P). Let the random vector (Y, Z) take on values in the set [0,1] × [0,2] and let the joint distribution of Y, Z on [0,1] × [0,2] be given by 1 dPy,z(y, z) (y²z + y²²) dy dz. Find the distribution Py of the random variable Y. [8 Marks]arrow_forward
- Refer to page 40 for solving a time-optimal control problem. Instructions: • Formulate the problem by minimizing the time to reach a target state. • Apply Pontryagin's Maximum Principle to derive the optimal control and switching conditions. • Solve explicitly for the control and state trajectories. Include clear diagrams to visualize the solution. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardQ1/ Two plate load tests were conducted in a C-0 soil as given belo Determine the required size of a footing to carry a load of 1250 kN for the same settlement of 30 mm. Size of plates (m) Load (KN) Settlement (mm) 0.3 x 0.3 40 30 0.6 x 0.6 100 30 Qx 0.6zarrow_forwardTotal marks 16 5. Let (,,P) be a probability space and let X : → R be a random variable whose probability density function is given by f(x) = }}|x|e¯|×| for x Є R. (i) (ii) Find the characteristic function of the random variable X. [8 Marks] Using the result of (i), calculate the first two moments of the random variable X, i.e., E(X") for n = 1, 2. (iii) What is the variance of X? [6 Marks] [2 Marks]arrow_forward
- Refer to page 12 for a problem on solving a homogeneous differential equation. Instructions: • Simplify the equation into a homogeneous form. Use appropriate substitutions to reduce complexity. Solve systematically and verify the final result with clear back-substitutions. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440AZF/view?usp=sharing]arrow_forwardRefer to page 36 for solving a bang-bang control problem. Instructions: • Formulate the problem, identifying the control constraints. • • Apply Pontryagin's Maximum Principle to derive the switching conditions. Clearly illustrate the switching points in the control trajectory. Verify the solution satisfies the optimality criteria. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardTotal marks 16 5. Let (N,F,P) be a probability space and let X : N → R be a random variable such that the probability density function is given by f(x)=ex for x € R. (i) Find the characteristic function of the random variable X. [8 Marks] (ii) Using the result of (i), calculate the first two moments of the random variable X, i.e., E(X") for n = 1,2. (iii) What is the variance of X. [6 Marks] [2 Marks]arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningHolt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGAL