EBK STATISTICS FOR BUSINESS & ECONOMICS
EBK STATISTICS FOR BUSINESS & ECONOMICS
12th Edition
ISBN: 9780100460461
Author: Anderson
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7.6, Problem 34E

The population proportion is .30. What is the probability that a sample proportion will be within ±.04 of the population proportion for each of the following sample sizes?

  1. a. n = 100
  2. b. n = 200
  3. c. n = 500
  4. d. n = 1000
  5. e. What is the advantage of a larger sample size?

a.

Expert Solution
Check Mark
To determine

Find the probability that the a sample proportion will be within ±0.04 of the population proportion for n=100.

Answer to Problem 34E

The probability that a sample proportion will be within ±0.04 of the population proportion for n=100 is 0.6156.

Explanation of Solution

Calculation:

The given information is that the population proportion is 0.30.

Sampling distribution of p¯:

The probability distribution all possible values of the sample proportion p¯ is termed as the sampling distribution of p¯.

  • The expected value of p¯ is, E(p¯)=p.
  • The standard deviation of p¯ is

    For finite population, σp¯=NnN1p(1p)n

    For infinite population, σp¯=p(1p)n

  • When np5 and n(1p)5 then the sampling distribution of p¯ is approximated by a normal distribution.

The expected value of p¯ is,

E(p¯)=p=0.30

Thus, the expected value of p¯ is 0.30.

The standard deviation of p¯ is σp¯=p(1p)n.

Substitute p as 0.30 and n as 100 in the formula,

σp¯=p(1p)n=0.30(10.30)100=0.21100=0.0021

      =0.0458

Thus, the standard deviation of p¯ is 0.0458.

Here,

np=100(0.30)=305

n(1p)=100(10.30)=100(0.70)=705

Therefore, the sampling distribution of p¯ is approximately normal with E(p¯)=0.30 and σp¯=0.0458.

The probability that the sample proportion will be within ±0.04 of the population proportion for n=100 is, P(p¯p±0.04)=P(0.26p¯0.34)

P(0.26p¯0.34)=P[0.26E(p¯)σp¯p¯E(p¯)σp¯0.34E(p¯)σp¯]=P(0.260.300.0458z0.340.300.0458)=P(0.87z0.87)=P(z0.87)P(z0.87)

For z=0.87:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value 0.8 in the first column.
  • Locate the value 0.07 in the first row corresponding to the value 0.8 in the first column.
  • The intersecting value of row and column is 0.8078.

For z=0.87:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value –0.8 in the first column.
  • Locate the value 0.07 in the first row corresponding to the value –0.8 in the first column.
  • The intersecting value of row and column is 0.1922.

P(0.26p¯0.34)=P(z0.87)P(z0.87)=0.80780.1922=0.6156

Thus, the probability that the sample proportion will be within ±0.04 of the population proportion for n=100 is 0.6156.

b.

Expert Solution
Check Mark
To determine

Find the probability that the a sample proportion will be within ±0.04 of the population proportion for n=200.

Answer to Problem 34E

The probability that the sample proportion will be within ±0.04 of the population proportion for n=200 is 0.7814.

Explanation of Solution

Calculation:

The standard deviation of p¯ is σp¯=p(1p)n.

Substitute p as 0.30 and n as 200 in the formula,

σp¯=p(1p)n=0.30(10.30)200=0.21200=0.00105

      =0.0324

Thus, the standard deviation of p¯ is 0.0324.

The probability that the sample proportion will be within ±0.04 of the population proportion for n=200 is, P(p¯p±0.04)=P(0.26p¯0.34)

P(0.26p¯0.34)=P[0.26E(p¯)σp¯p¯E(p¯)σp¯0.34E(p¯)σp¯]=P(0.260.300.0324z0.340.300.0324)=P(1.23z1.23)=P(z1.23)P(z1.23)

For z=1.23:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value 1.2 in the first column.
  • Locate the value 0.03 in the first row corresponding to the value 1.2 in the first column.
  • The intersecting value of row and column is 0.8907.

For z=1.23:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value –1.2 in the first column.
  • Locate the value 0.03 in the first row corresponding to the value –1.2 in the first column.
  • The intersecting value of row and column is 0.1093

P(0.26p¯0.34)=P(z1.23)P(z1.23)=0.89070.1093=0.7814

Thus, the probability that the sample proportion will be within ±0.04 of the population proportion for n=200 is 0.7814.

c.

Expert Solution
Check Mark
To determine

Find the probability that the a sample proportion will be within ±0.04 of the population proportion for n=500.

Answer to Problem 34E

The probability that the sample proportion will be within ±0.04 of the population proportion for n=500 is 0.9488.

Explanation of Solution

Calculation:

The standard deviation of p¯ is σp¯=p(1p)n.

Substitute p as 0.30 and n as 500 in the formula,

σp¯=p(1p)n=0.30(10.30)500=0.21500=0.00042

      =0.0205

Thus, the standard deviation of p¯ is 0.0205.

The probability that the sample proportion will be within ±0.04 of the population proportion for n=500 is, P(p¯p±0.04)=P(0.26p¯0.34)

P(0.26p¯0.34)=P[0.26E(p¯)σp¯p¯E(p¯)σp¯0.34E(p¯)σp¯]=P(0.260.300.0205z0.340.300.0205)=P(1.95z1.95)=P(z1.95)P(z1.95)

For z=1.95:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value 1.9 in the first column.
  • Locate the value 0.05 in the first row corresponding to the value 1.9 in the first column.
  • The intersecting value of row and column is 0.9744.

For z=1.95:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value –1.9 in the first column.
  • Locate the value 0.05 in the first row corresponding to the value –1.9 in the first column.
  • The intersecting value of row and column is 0.0256.

P(0.26p¯0.34)=P(z1.95)P(z1.95)=0.97440.0256=0.9488

Thus, the probability that the sample proportion will be within ±0.04 of the population proportion for n=500 is 0.9488.

d.

Expert Solution
Check Mark
To determine

Find the probability that the a sample proportion will be within ±0.04 of the population proportion for n=1,000.

Answer to Problem 34E

The probability that the sample proportion will be within ±0.04 of the population proportion for n=1,000 is 0.9942.

Explanation of Solution

Calculation:

The sample size is 1,000.

The standard deviation of p¯ is σp¯=p(1p)n.

Substitute p as 0.30 and n as 1,000 in the formula,

σp¯=p(1p)n.=0.30(10.30)1,000=0.211,000=0.00021

      =0.0145

Thus, the standard deviation of p¯ is 0.0145.

The probability that the sample proportion will be within ±0.04 of the population proportion for n=1,000 is, P(p¯p±0.04)=P(0.26p¯0.34)

P(0.26p¯0.34)=P[0.26E(p¯)σp¯p¯E(p¯)σp¯0.34E(p¯)σp¯]=P(0.260.300.0145z0.340.300.0145)=P(2.76z2.76)=P(z2.76)P(z2.76)

For z=2.76:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value 2.7 in the first column.
  • Locate the value 0.06 in the first row corresponding to the value 2.7 in the first column.
  • The intersecting value of row and column is 0.9971.

For z=2.76:

From Table 1: Cumulative probabilities for the standard normal distribution,

  • Locate the value –2.7 in the first column.
  • Locate the value 0.06 in the first row corresponding to the value –2.7 in the first column.
  • The intersecting value of row and column is 0.0029.

P(0.26p¯0.34)=P(z2.76)P(z2.76)=0.99710.0029=0.9942

Thus, the probability that the sample proportion will be within ±0.04 of the population proportion for n=1,000 is 0.9942.

e.

Expert Solution
Check Mark
To determine

Explain the advantage of a larger sample size.

Explanation of Solution

For larger sample size the probability becomes approximately 1.

There is higher chance that the probability would be within ±0.04 of the population proportion.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Homework Let X1, X2, Xn be a random sample from f(x;0) where f(x; 0) = (-), 0 < x < ∞,0 € R Using Basu's theorem, show that Y = min{X} and Z =Σ(XY) are indep. -
Homework Let X1, X2, Xn be a random sample from f(x; 0) where f(x; 0) = e−(2-0), 0 < x < ∞,0 € R Using Basu's theorem, show that Y = min{X} and Z =Σ(XY) are indep.
An Arts group holds a raffle.  Each raffle ticket costs $2 and the raffle consists of 2500 tickets.  The prize is a vacation worth $3,000.    a. Determine your expected value if you buy one ticket.     b. Determine your expected value if you buy five tickets.     How much will the Arts group gain or lose if they sell all the tickets?

Chapter 7 Solutions

EBK STATISTICS FOR BUSINESS & ECONOMICS

Ch. 7.3 - The following data are from a simple random...Ch. 7.3 - A survey question for a sample of 150 individuals...Ch. 7.3 - A sample of 5 months of sales data provided the...Ch. 7.3 - BusinessWeek published information on 283 equity...Ch. 7.3 - Many drugs used to treat cancer are expensive....Ch. 7.3 - A sample of 426 U.S. adults age 50 and older were...Ch. 7.3 - The American Association of Individual Investors...Ch. 7.5 - A population has a mean of 200 and a standard...Ch. 7.5 - A population has a mean of 200 and a standard...Ch. 7.5 - Assume the population standard deviation is = 25....Ch. 7.5 - Suppose a random sample of size 50 is selected...Ch. 7.5 - Refer to the EAI sampling problem. Suppose a...Ch. 7.5 - In the EAI sampling problem (see Figure 7.5), we...Ch. 7.5 - Barrons reported that the average number of weeks...Ch. 7.5 - The College Board reported the following mean...Ch. 7.5 - The mean annual cost of automobile insurance is...Ch. 7.5 - The Economic Policy Institute periodically issues...Ch. 7.5 - The average score for male golfers is 95 and the...Ch. 7.5 - The mean preparation fee HR Block charged retail...Ch. 7.5 - To estimate the mean age for a population of 4000...Ch. 7.6 - A sample of size 100 is selected from a population...Ch. 7.6 - A population proportion is .40. A sample of size...Ch. 7.6 - Assume that the population proportion is .55....Ch. 7.6 - The population proportion is .30. What is the...Ch. 7.6 - The president of Doerman Distributors, Inc.,...Ch. 7.6 - The Wall Street Journal reported that the age at...Ch. 7.6 - People end up tossing 12% of what they buy at the...Ch. 7.6 - Forty-two percent of primary care doctors think...Ch. 7.6 - In 2008 the Better Business Bureau settled 75% of...Ch. 7.6 - The Grocery Manufacturers of America reported that...Ch. 7.6 - The Food Marketing Institute shows that 17% of...Ch. 7 - U.S. News World Report publishes comprehensive...Ch. 7 - The latest available data showed health...Ch. 7 - Foot Locker uses sales per square foot as a...Ch. 7 - The mean television viewing time for Americans is...Ch. 7 - After deducting grants based on need, the average...Ch. 7 - Three firms carry inventories that differ in size....Ch. 7 - A researcher reports survey results by stating...Ch. 7 - A production process is checked periodically by a...Ch. 7 - About 28% of private companies are owned by women...Ch. 7 - A market research firm conducts telephone surveys...Ch. 7 - Advertisers contract with Internet service...Ch. 7 - The proportion of individuals insured by the...Ch. 7 - Lori Jeffrey is a successful sales representative...
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
PREALGEBRA
Algebra
ISBN:9781938168994
Author:OpenStax
Publisher:OpenStax
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License