DIFFERENTIAL EQUATIONS(LL) W/WILEYPLUS
DIFFERENTIAL EQUATIONS(LL) W/WILEYPLUS
3rd Edition
ISBN: 9781119764601
Author: BRANNAN
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7.5, Problem 8P

(a) Show that the system d x d t = y + x f ( r ) r , d y d t = x + y f ( r ) r has periodic solutions corresponding to the zeros of f ( r ) . What is the direction of motion on the closed trajectories in the phase plane ?

(b) Let f ( r ) = r ( r 6 ) 2 ( r 2 6 r + 5 ) . Determine all periodic solutions and determine their stability characteristics.

Blurred answer
Students have asked these similar questions
M = log The formula determines the magnitude of an earthquake, where / is the intensity of the earthquake and S is the intensity of a "standard earthquake." How many times stronger is an earthquake with a magnitude of 8 than an earthquake with a magnitude of 6? Show your work.
Now consider equations of the form ×-a=v = √bx + c, where a, b, and c are all positive integers and b>1. (f) Create an equation of this form that has 7 as a solution and an extraneous solution. Give the extraneous solution. (g) What must be true about the value of bx + c to ensure that there is a real number solution to the equation? Explain.
The equation ×+ 2 = √3x+10 is of the form ×+ a = √bx + c, where a, b, and c are all positive integers and b > 1. Using this equation as a model, create your own equation that has extraneous solutions. (d) Using trial and error with numbers for a, b, and c, create an equation of the form x + a = √bx + c, where a, b, and c are all positive integers and b>1 such that 7 is a solution and there is an extraneous solution. (Hint: Substitute 7 for x, and choose a value for a. Then square both sides so you can choose a, b, and c that will make the equation true.) (e) Solve the equation you created in Part 2a.

Chapter 7 Solutions

DIFFERENTIAL EQUATIONS(LL) W/WILEYPLUS

Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problemsthrough: Find...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problemsthrough: Find...Ch. 7.1 - Consider the equations of motion of an undamped...Ch. 7.1 - The motion of a certain undamped pendulum is...Ch. 7.1 - Consider the pendulum equations dxdt=y,dydt=6sinx....Ch. 7.1 - Prob. 22PCh. 7.1 - Given that x=(t),y=(t) is a solution of the...Ch. 7.1 - Prove that, for the system...Ch. 7.1 - Prove that if a trajectory starts at a noncritical...Ch. 7.1 - Assuming that the trajectory corresponding to a...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - Consider the autonomous system dxdt=y,dydt=x+2x3....Ch. 7.2 - Consider the autonomous system ...Ch. 7.2 - The equations of motion of a certain nonlinear...Ch. 7.2 - Theorem 7.2.2 provides no information about the...Ch. 7.2 - In this problem, we show how small changes in the...Ch. 7.2 - In this problem, we show how small changes in the...Ch. 7.2 - A generalization of the damped pendulum equation...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Show that (1X+2Y)24(1212)XY=(1X2Y)2+412XY. Hence...Ch. 7.3 - Consider the system (2) in the text, and assume...Ch. 7.3 - Consider the system (3) in Example 1 of the text....Ch. 7.3 - The system x=yy=yx(x0.15)(x3) Results from an...Ch. 7.3 - Bifurcation points. Consider the system...Ch. 7.3 - Bifurcation points. Consider the system Where is...Ch. 7.3 - Bifurcation points. Consider the system Where is...Ch. 7.3 - Bifurcation points. Consider the system Where is...Ch. 7.3 - In each of Problem 15 and 16: a) Find the critical...Ch. 7.3 - In each of Problem 15 and 16: Find the critical...Ch. 7.3 - Suppose that a certain pair of competing species...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - In this problem, we examine the phase difference...Ch. 7.4 - a) Find the ratio of the amplitudes of the...Ch. 7.4 - Find the period of the oscillations of the prey...Ch. 7.4 - Consider the system Where and are positive...Ch. 7.4 - The average size of the prey and predator...Ch. 7.4 - In Problems 11 and 12, we consider the effect of...Ch. 7.4 - In Problems 11 and 12, we consider the effect of...Ch. 7.4 - In the Lotka-Volterra equations, the interaction...Ch. 7.4 - Harvesting in a Predator-Prey Relationship. In a...Ch. 7.4 - Harvesting in a Predator-Prey Relationship. In a...Ch. 7.4 - Harvesting in a Predator-Prey Relationship. In a...Ch. 7.5 - In each of Problems through , an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - In each of Problems through , an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - If x=rcos,y=rsin, show that...Ch. 7.5 - (a) Show that the system has periodic solutions...Ch. 7.5 - Determine the periodic solutions, if any, of the...Ch. 7.5 - Using Theorem, show that the linear autonomous...Ch. 7.5 - In each of Problems 11 and 12, show that the given...Ch. 7.5 - In each of Problems and , show that the given...Ch. 7.5 - Prob. 13PCh. 7.5 - By examining the graphs of vs. in Figures , , ...Ch. 7.5 - The equation u(113u2)u+u=0 Is often called the...Ch. 7.5 - Consider the system of equations...Ch. 7.5 - Consider the van der Pol system x=y,y=x+(1x2)y,...Ch. 7.5 - Problems 18 and 19 extend the consideration of the...Ch. 7.5 - Problems 18 and 19 extend the consideration of the...Ch. 7.5 - There are certain chemical reactions in which the...Ch. 7.5 - The system Is a special case of the...Ch. 7.6 - Problems through ask you to fill in some of the...Ch. 7.6 - Problems through ask you to fill in some of the...Ch. 7.6 - Ch. 7.6 - Consider the ellipsoid . Calculate along...Ch. 7.6 - In each of Problems 5 through 7, carry out the...Ch. 7.6 - In each of Problems 5 through 7, carry out the...Ch. 7.6 - In each of Problems 5 through 7, carry out the...Ch. 7.6 - For certain intervals, or windows, the Lorenz...Ch. 7.6 - Now consider values of r slightly larger than...Ch. 7.P1 - Assume that , that is, the total size of the...Ch. 7.P1 - The triangular region in the SI-plane is depicted...Ch. 7.P1 - If epidemics are identified with solution...Ch. 7.P1 - Find an equation of the form satisfied by the...Ch. 7.P1 - In the SIR system (1), describe qualitatively the...Ch. 7.P1 - Vaccinated individual are protected from acquiring...Ch. 7.P1 - Use the equation to reduce the SIRS model (3) to...Ch. 7.P2 - Consider again the system (i) Which...Ch. 7.P2 - Consider the system dxdt=x(1xy),dydt=y(0.80.6yx),...Ch. 7.P2 - Consider the system (i) in Problem 1, and assume...Ch. 7.P2 - Aconstant-yield model, applied to species x,...Ch. 7.P3 - a) Show that there are no critical points when...Ch. 7.P3 - a) Let c=1.3. Find the critical points and the...Ch. 7.P3 - The limit cycle found in Problem 2 comes into...Ch. 7.P3 - Let. Find the critical points and the...Ch. 7.P3 - Let. Find the critical points and the...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY