EBK MECHANICS OF MATERIALS
EBK MECHANICS OF MATERIALS
7th Edition
ISBN: 8220102804487
Author: BEER
Publisher: YUZU
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 7.5, Problem 77P

For the state of stress shown, determine two values of σy for which the maximum shearing stress is 10 ksi.

Chapter 7.5, Problem 77P, For the state of stress shown, determine two values of y for which the maximum shearing stress is 10

Fig. P7.77

Expert Solution & Answer
Check Mark
To determine

The two values of σy for the state of stress.

Answer to Problem 77P

The values of σy are 2ksi and 9.33ksi_.

Explanation of Solution

Given information:

The components of stress σx=14ksi, and τxy=8ksi.

The maximum shear stress τmax=10ksi.

Calculation:

Consider u=σyσx2 (1)

Modify Equation (1) as shown below.

2u=σyσxσy=σx+2u (2)

Calculate the average normal stress (σavg) as shown below.

σavg=σx+σy2

Substitute σx+2u for σy.

σavg=σx+σx+2u2=2σx+2u2=σx+u (3)

Calculate the value u as shown below.

τmax=u2+τxy2 (4)

Substitute 10ksi for τmax and 8ksi for τxy in Equation (4).

10=u2+82100=u2+64u2=36u=±6ksi

Case 1:

For u=6ksi:

Calculate the value of σy as shown below.

Substitute 14ksi for σx and 6ksi for u in Equation (2).

σy=14+2×6=26ksi

Calculate the average normal stress (σavg) as shown below.

Substitute 14ksi for σx and 6ksi for u in Equation (3).

σavg=14+6=20ksi

Calculate the principal stresses (σmaxand σmin) as shown below.

σmax,min=σavg±R (5)

Substitute 20ksi for σavg and 10ksi for R in Equation (5).

σa,b=20±10σa=30ksiσb=10ksi

Hence, the principal stresses are σmax=σa=30ksi and σmin=0.

Calculate the maximum shearing stress as shown below.

τmax=12(σmaxσmin) (6)

Substitute 30ksi for σmax and 0 for σmin in Equation (6).

τmax=12(300)=15ksi7.5 ksi

For u=6ksi:

Calculate the value of σy as shown below.

Substitute 14ksi for σx and 6ksi for u in Equation (2).

σy=14+2×(6)=2ksi

Calculate the average normal stress (σavg) as shown below.

Substitute 14ksi for σx and 6ksi for u in Equation (3).

σavg=14+(6)=8ksi

Calculate the principal stresses (σmaxand σmin) as shown below.

Substitute 8ksi for σavg and 10ksi for R in Equation (5).

σa,b=8±10σa=18ksiσb=2ksi

Hence, the principal stresses are σmax=σa=18ksi and σmin=σa=2ksi.

Calculate the maximum shearing stress as shown below.

Substitute 18ksi for σmax and 2ksi for σmin in Equation (6).

τmax=12(18(2))=10ksi(OK)

Hence, the value of σy=2ksi_.

Case 2:

Assume the minimum principal stress σmin=0.

Calculate the maximum principal stress as shown below.

Substitute 0 for σmin and 10ksi for τmax in Equation (6).

10=12(σmax0)σmax=20ksi

The maximum principal stress σa=σavg+R.

Substitute σx+u for σavg and u2+τxy2 for R.

σa=σx+u+u2+τxy2u2+τxy2=σauσxu2+τxy2=(σauσx)2u2+τxy2=σa2+u2+σx2+2σa(u)+2(u)(σx)+2(σx)σa

u2+τxy2=σx2+σa2+2u(σxσa)2σxσa+u2τxy2=(σaσx)22u(σaσx)2u(σaσx)=(σaσx)2τxy2u=(σaσx)2τxy22(σaσu)

Substitute 14ksi for σx, 20ksi for σa, and 8ksi for τxy.

u=(2014)2822(2014)=2812=2.3333ksi

Calculate the value of σy as shown below.

Substitute 14ksi for σx and 2.3333ksi for u in Equation (2).

σy=14+2×(2.3333)=9.3334ksi

Calculate the value of R as shown below.

Substitute 2.3333ksi for u and 8ksi for τxy in Equation (4).

R=(2.3333)2+82=69.4443=8.3333ksi

Calculate the average normal stress (σavg) as shown below.

Substitute 14ksi for σx and 2.3333ksi for u in Equation (3).

σavg=14+(2.3333)=11.6667ksi

Calculate the principal stress σb as shown below.

σb=σavgR

Substitute 11.6667ksi for σavg and 8.3333ksi for R.

σb=11.66678.3333=3.3334ksi

Hence, the principal stresses σmax=20ksi, σmin=0, and τmax=10ksi.

Therefore, the value of σy=9.33ksi_.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
7.25 The steel pipe AB has a 102-mm outer diameter and a 6-mm wall thickness. Knowing that arm CD is rigidly attached to the pipe, determine the principal stresses and the maximum shearing stress at point K. 10 kN 200 mm C Fig. P7.25 22 6 mm B H D 51 mm 150 mm
PROBLEM 8.40 A thin strap is wrapped around a solid rod of radius c= 20 mm as shown. Knowing that I = 100 mm and F = 5 kN, determine the normal and shearing stresses at (a) point H, (b) point K. o = 79.6 MPa T=7.96 MPa O =0 T=13.26 MPa
For the state of stress shown, Using Mohr's circle. determine (a) the principal stresses; and (b) the maximum in-plane shear stress. Show the results on properly oriented elements. 8 ksi 6 ksi 4 ksi FIG. P8.58

Chapter 7 Solutions

EBK MECHANICS OF MATERIALS

Ch. 7.1 - 7.9 through 7.12 For the given state of stress,...Ch. 7.1 - 7.9 through 7.12 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.13 through 7.16 For the given state of stress,...Ch. 7.1 - 7.17 and 7.18 The grain of a wooden member forms...Ch. 7.1 - 7.17 and 7.18 The grain of a wooden member forms...Ch. 7.1 - Two wooden members of 80 120-mm uniform...Ch. 7.1 - Two wooden members of 80 120-mm uniform...Ch. 7.1 - The centric force P is applied to a short post as...Ch. 7.1 - Two members of uniform cross section 50 80 mm are...Ch. 7.1 - The axle of an automobile is acted upon by the...Ch. 7.1 - A 400-lb vertical force is applied at D to a gear...Ch. 7.1 - A mechanic uses a crowfoot wrench to loosen a bolt...Ch. 7.1 - The steel pipe AB has a 102-mm outer diameter and...Ch. 7.1 - For the state of plane stress shown, determine the...Ch. 7.1 - For the state of plane stress shown, determine (a)...Ch. 7.1 - For the state of plane stress shown, determine (a)...Ch. 7.1 - Determine the range of values of x for which the...Ch. 7.2 - Solve Probs. 7.5 and 7.9, using Mohr's circle. 7.5...Ch. 7.2 - Solve Probs. 7.7 and 7.11, using Mohrs circle. 7.5...Ch. 7.2 - Solve Prob. 7.10, using Mohrs circle. 7.9 through...Ch. 7.2 - Solve Prob. 7.12, using Mohr's circle. 7.9 through...Ch. 7.2 - Solve Prob. 7.13, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.14, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.15, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.16, using Mohr's circle. 7.13...Ch. 7.2 - Solve Prob. 7.17, using Mohr's circle. 7.17 and...Ch. 7.2 - Solve Prob. 7.18, using Mohr's circle. 7.17 and...Ch. 7.2 - Solve Prob. 7.19, using Mohr's circle. 7.19 Two...Ch. 7.2 - Solve Prob. 7.20, using Mohr's circle. 7.20 Two...Ch. 7.2 - Solve Prob. 7.21, using Mohrs circle. 7.21 The...Ch. 7.2 - Solve Prob. 7.22, using Mohrs circle. 7.22 Two...Ch. 7.2 - Solve Prob. 7.23, using Mohr's circle. 7.23 The...Ch. 7.2 - Solve Prob. 7.24, using Mohr's circle 7.24 A...Ch. 7.2 - Solve Prob. 7.25, using Mohrs circle. 7.25 A...Ch. 7.2 - Solve Prob. 7.26, using Mohrs circle. 7.26 The...Ch. 7.2 - Solve Prob. 7.27, using Mohr's circle. 7.27 For...Ch. 7.2 - Solve Prob. 7.28, using Mohrs circle. 7.28 For the...Ch. 7.2 - Solve Prob. 7.29, using Mohr's circle. 7.29 For...Ch. 7.2 - Solve Prob. 7.30, using Mohrs circle. 7.30...Ch. 7.2 - Solve Prob. 7.29, using Mohr's circle and assuming...Ch. 7.2 - 7.54 and 7.55 Determine the principal planes and...Ch. 7.2 - 7.54 and 7.55 Determine the principal planes and...Ch. 7.2 - 7.56 and 7.57 Determine the principal planes and...Ch. 7.2 - 7.56 and 7.57 Determine the principal planes and...Ch. 7.2 - For the element shown, determine the range of...Ch. 7.2 - For the element shown, determine the range of...Ch. 7.2 - For the state of stress shown, determine the range...Ch. 7.2 - For the state of stress shown, determine the range...Ch. 7.2 - For the state of stress shown, determine the range...Ch. 7.2 - For the state of stress shown, it is known that...Ch. 7.2 - The Mohr's circle shown corresponds to the state...Ch. 7.2 - (a) Prove that the expression xy 2xywhere x,...Ch. 7.5 - For the state of plane stress shown, determine the...Ch. 7.5 - For the state of plane stress shown, determine the...Ch. 7.5 - For the state of stress shown, determine the...Ch. 7.5 - For the state of stress shown, determine the...Ch. 7.5 - 7.70 and 7.71 For the state of stress shown,...Ch. 7.5 - 7.70 and 7.71 For the state of stress shown,...Ch. 7.5 - 7.72 and 7.73 For the state of stress shown,...Ch. 7.5 - 7.72 and 7.73 For the state of stress shown,...Ch. 7.5 - For the state of stress shown, determine the value...Ch. 7.5 - For the state of stress shown, determine the value...Ch. 7.5 - Prob. 76PCh. 7.5 - For the state of stress shown, determine two...Ch. 7.5 - For the state of stress shown, determine the range...Ch. 7.5 - Prob. 79PCh. 7.5 - Prob. 80PCh. 7.5 - The state of plane stress shown occurs in a...Ch. 7.5 - Prob. 82PCh. 7.5 - The state of plane stress shown occurs in a...Ch. 7.5 - Solve Prob. 7.83, using the...Ch. 7.5 - The 38-mm-diameter shaft AB is made of a grade of...Ch. 7.5 - Solve Prob. 7.85, using the...Ch. 7.5 - The 1.5-in.-diameter shaft AB is made of a grade...Ch. 7.5 - Prob. 88PCh. 7.5 - Prob. 89PCh. 7.5 - Prob. 90PCh. 7.5 - Prob. 91PCh. 7.5 - Prob. 92PCh. 7.5 - Prob. 93PCh. 7.5 - Prob. 94PCh. 7.5 - Prob. 95PCh. 7.5 - Prob. 96PCh. 7.5 - Prob. 97PCh. 7.6 - A spherical pressure vessel has an outer diameter...Ch. 7.6 - A spherical gas container having an inner diameter...Ch. 7.6 - The maximum gage pressure is known to be 1150 psi...Ch. 7.6 - Prob. 101PCh. 7.6 - Prob. 102PCh. 7.6 - A basketball has a 300-mm outer diameter and a...Ch. 7.6 - The unpressurized cylindrical storage tank shown...Ch. 7.6 - Prob. 105PCh. 7.6 - Prob. 106PCh. 7.6 - Prob. 107PCh. 7.6 - Prob. 108PCh. 7.6 - Prob. 109PCh. 7.6 - Prob. 110PCh. 7.6 - Prob. 111PCh. 7.6 - The cylindrical portion of the compressed-air tank...Ch. 7.6 - Prob. 113PCh. 7.6 - Prob. 114PCh. 7.6 - Prob. 115PCh. 7.6 - Square plates, each of 0.5-in. thickness, can be...Ch. 7.6 - The pressure tank shown has a 0.375-in. wall...Ch. 7.6 - Prob. 118PCh. 7.6 - Prob. 119PCh. 7.6 - A pressure vessel of 10-in. inner diameter and...Ch. 7.6 - Prob. 121PCh. 7.6 - A torque of magnitude T = 12 kN-m is applied to...Ch. 7.6 - The tank shown has a 180-mm inner diameter and a...Ch. 7.6 - The compressed-air tank AB has a 250-rnm outside...Ch. 7.6 - In Prob. 7.124, determine the maximum normal...Ch. 7.6 - Prob. 126PCh. 7.6 - Prob. 127PCh. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - Prob. 130PCh. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - Prob. 132PCh. 7.9 - Prob. 133PCh. 7.9 - Prob. 134PCh. 7.9 - 7.128 through 7.131 For the given state of plane...Ch. 7.9 - 7.136 through 7.139 The following state of strain...Ch. 7.9 - Prob. 137PCh. 7.9 - Prob. 138PCh. 7.9 - Prob. 139PCh. 7.9 - Prob. 140PCh. 7.9 - 7.140 through 7.143 For the given state of plane...Ch. 7.9 - Prob. 142PCh. 7.9 - Prob. 143PCh. 7.9 - Prob. 144PCh. 7.9 - The strains determined by the use of the rosette...Ch. 7.9 - Prob. 146PCh. 7.9 - Prob. 147PCh. 7.9 - Show that the sum of the three strain measurements...Ch. 7.9 - Prob. 149PCh. 7.9 - Prob. 150PCh. 7.9 - Solve Prob. 7.150, assuming that the rosette at...Ch. 7.9 - Prob. 152PCh. 7.9 - Prob. 153PCh. 7.9 - Prob. 154PCh. 7.9 - Prob. 155PCh. 7.9 - The given state of plane stress is known to exist...Ch. 7.9 - The following state of strain has been determined...Ch. 7 - A steel pipe of 12-in. outer diameter is...Ch. 7 - Two steel plates of uniform cross section 10 80...Ch. 7 - Prob. 160RPCh. 7 - Prob. 161RPCh. 7 - For the state of stress shown, determine the...Ch. 7 - For the state of stress shown, determine the value...Ch. 7 - The state of plane stress shown occurs in a...Ch. 7 - The compressed-air tank AB has an inner diameter...Ch. 7 - For the compressed-air tank and loading of Prob....Ch. 7 - Prob. 167RPCh. 7 - Prob. 168RPCh. 7 - Prob. 169RP
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Understanding Stress Transformation and Mohr's Circle; Author: The Efficient Engineer;https://www.youtube.com/watch?v=_DH3546mSCM;License: Standard youtube license