Concept explainers
For the state of stress shown, determine two values of σy for which the maximum shearing stress is 10 ksi.
Fig. P7.77
The two values of
Answer to Problem 77P
The values of
Explanation of Solution
Given information:
The components of stress
The maximum shear stress
Calculation:
Consider
Modify Equation (1) as shown below.
Calculate the average normal stress
Substitute
Calculate the value u as shown below.
Substitute
Case 1:
For
Calculate the value of
Substitute
Calculate the average normal stress
Substitute
Calculate the principal stresses
Substitute
Hence, the principal stresses are
Calculate the maximum shearing stress as shown below.
Substitute
For
Calculate the value of
Substitute
Calculate the average normal stress
Substitute
Calculate the principal stresses
Substitute
Hence, the principal stresses are
Calculate the maximum shearing stress as shown below.
Substitute
Hence, the value of
Case 2:
Assume the minimum principal stress
Calculate the maximum principal stress as shown below.
Substitute
The maximum principal stress
Substitute
Substitute
Calculate the value of
Substitute
Calculate the value of R as shown below.
Substitute
Calculate the average normal stress
Substitute
Calculate the principal stress
Substitute
Hence, the principal stresses
Therefore, the value of
Want to see more full solutions like this?
Chapter 7 Solutions
EBK MECHANICS OF MATERIALS
- Solution should be correctarrow_forwardProblem 4 The steel pipe AB has a 102-mam outer diameter and a 6-mm wall thickness. Knowing that arm CD is rigidly attached to the pipe, determine the principal stresses and the maximum shearing stress at point K. And then show stress on Mohr's circle. 200 mm 6 mm B H D 51 mm 150 mm xarrow_forward7.6666arrow_forward
- Please help me get the answerarrow_forwardI need the solution for this problem. Under normal operating conditions, the electric motor exerts a torque at point E of 12 kip-in. Knowing that each axis is solid, determine the maximum shear stress on (a) axis BC, (b) axis CD, (c) axis DE.arrow_forward7.58 For the state of stress shown, determine the range of values of 0 for which the normal stress o, is equal to or less than 100 MPa. 90 MPa Try 60 MPa the Fig. P7.58 and P7.59arrow_forward
- 19. knowing that a force P of magnitude 75 N is applied to the pedestal shown, determine (a) the diameter of the pin at C for which the average shearing stress in the pin is 40 MPa, (b) the corresponding bearing stress in the pedestal at C, (c) the corresponding bearing stress in each support bracket at C. 75 mm 9 mm - 300 mm- B 125 mm D 5 mmarrow_forwardPROBLEM 7.26 0.2 m The axle of an automobile is acted upon by the forces and couple shown. Knowing that the diameter of the solid axle is 32 mm, determine (a) the principal planes and principal stresses at point H located on top of the axle, (b) the maximum shearing stress at the same point. 3 kN 350 N- m 3 kN Omax = 18.67 MPa = -158,5 MPa O minarrow_forward1.4 kN - m PROBLEM 8.43 A 10-kN force and a 1.4-kN - m couple are applied at the top of the 65-mm diameter brass post shown. Determine the principal stresses and maximum shearing stress at (a) point H, (b) point K. 10 kN 240 mm Omax = 30.0 MPa O min =-30.0 MPa Tmax = 30.0 MPa Omax = 7.02 MPa Omin =-96.0 MPa Tmay =51.5 MPaarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY