For Exercises 65-68, find the work w done by a force F in moving an object in a straight line given by the displacement vector D. (See Example 6) F = − 26 i + 32 j N ; D = 100 i + 120 j m
For Exercises 65-68, find the work w done by a force F in moving an object in a straight line given by the displacement vector D. (See Example 6) F = − 26 i + 32 j N ; D = 100 i + 120 j m
Solution Summary: The author calculates the work done by an external force, F=(-26i+32j)N, to move an object in a straight line for the given displacement vector,
For Exercises 65-68, find the work w done by a force F in moving an object in a straight line given by the displacement vector D. (See Example 6)
F
=
−
26
i
+
32
j
N
;
D
=
100
i
+
120
j
m
Quantities that have magnitude and direction but not position. Some examples of vectors are velocity, displacement, acceleration, and force. They are sometimes called Euclidean or spatial vectors.
4
In the integral dxf1dy (7)², make the change of variables x = ½(r− s), y = ½(r + s), and
evaluate the integral. Hint: Find the limits on r and s by sketching the area of integration in the (x, y) plane along
with the r and s axes, and then show that the same area can be covered by s from 0 to r and r from 0 to 1.
7. What are all values of 0, for 0≤0<2л, where 2 sin² 0=-sin?
-
5π
6
π
(A) 0, л,
and
6
7π
(B) 0,л,
11π
, and
6
6
π 3π π
(C)
5π
2 2 3
, and
π 3π 2π
(D)
2' 2'3
, and
3
4元
3
1
די
}
I
-2m
3
1
-3
บ
1
#
1
I
3#
3m
8. The graph of g is shown above. Which of the following is an expression for g(x)?
(A) 1+ tan(x)
(B) 1-tan (x)
(C) 1-tan (2x)
(D) 1-tan
+
X
-
9. The function j is given by j(x)=2(sin x)(cos x)-cos x. Solve j(x) = 0 for values of x in the interval
Quiz A: Topic 3.10
Trigonometric Equations and Inequalities
Created by Bryan Passwater
can you solve this question using the right triangle method and explain the steps used along the way
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY