Decoding Messages We have encoded messages by assigning the numbers 1 to 26 to the letters a to z of the alphabet, respectively, and assigning 27 to a blank space. We can decode messages of this type by finding the inverse of the encoding matrix and multiplying it times the coded message. Use A−1 and the conversion table below to decode the messages in Exercises 39–44.
a b c d e f g h i j k l m n o p
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
q r s t u v w x y z blank
17 18 19 20 21 22 23 24 25 26 27
44. Decoding Messages Use the encoding matrix
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
COLLEGE ALGEBRA IN CONTEXT W/ INT. REVIE
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning