DIFFERENTIAL EQUATIONS W/WILEYPLUS
DIFFERENTIAL EQUATIONS W/WILEYPLUS
3rd Edition
ISBN: 9781119764618
Author: BRANNAN
Publisher: WILEY
bartleby

Videos

Textbook Question
Book Icon
Chapter 7.3, Problem 6P

Each of Problems 1 through 6 can be interpreted as describeing the interaction of two species with populations x and y . in each of these problems, carry out the following steps

a) Draw a direction field and describe how solutions seem to behave.

b) Find the critical points.

c) For each critical points, find the corresponding linear sytem. Find the eigenvectors of the linear system, classify each critical points as to type, and determine whether it is asymototically stable, stable, or unstable.

d) Sketch thetrajectories in the neighbourhood of each critical points.

e) Compute and plot enough trajectories of the given system to show clearly the behaviour of the solutions.

f) Determine the limiting behaviour of x and y as t , and interpret the result in terms of the populations of the two species.

d x / d t = x ( 1 x + 0.5 y ) , d x / d t = y ( 2.5 1.5 y 0.25 x )

Blurred answer
Students have asked these similar questions
Compare the interest earned from #1 (where simple interest was used) to #5 (where compound interest was used). The principal, annual interest rate, and time were all the same; the only difference was that for #5, interest was compounded quarterly. Does the difference in interest earned make sense? Select one of the following statements.   a. No, because more money should have been earned through simple interest than compound interest.  b. Yes, because more money was earned through simple interest. For simple interest you earn interest on interest, not just on the amount of principal. c. No, because more money was earned through simple interest. For simple interest you earn interest on interest, not just on the amount of principal. d. Yes, because more money was earned when compounded quarterly. For compound interest you earn interest on interest, not just on the amount of principal.
Reduce the matrix to reduced row-echelon form. [3 2 -2-191 A = 3 -2 0 5 + 2 1 -2 -14 17 1 0 0 3 0 1 0 0 0 4
Compare and contrast the simple and compound interest formulas.  Which one of the following statements is correct?  a. Simple interest and compound interest formulas both yield principal plus interest, so you must subtract the principal to get the amount of interest. b. Simple interest formula yields principal plus interest, so you must subtract the principal to get the amount of interest; Compound interest formula yields only interest, which you must add to the principal to get the final amount. c. Simple interest formula yields only interest, which you must add to the principal to get the final amount; Compound interest formula yields principal plus interest, so you must subtract the principal to get the amount of interest. d. Simple interest and compound interest formulas both yield only interest, which you must add to the principal to get the final amount.

Chapter 7 Solutions

DIFFERENTIAL EQUATIONS W/WILEYPLUS

Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problemsthrough: Find...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problems 1 through 18:...Ch. 7.1 - For each of the systems in Problemsthrough: Find...Ch. 7.1 - Consider the equations of motion of an undamped...Ch. 7.1 - The motion of a certain undamped pendulum is...Ch. 7.1 - Consider the pendulum equations dxdt=y,dydt=6sinx....Ch. 7.1 - Prob. 22PCh. 7.1 - Given that x=(t),y=(t) is a solution of the...Ch. 7.1 - Prove that, for the system...Ch. 7.1 - Prove that if a trajectory starts at a noncritical...Ch. 7.1 - Assuming that the trajectory corresponding to a...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems 1 through 20: (a) Determine...Ch. 7.2 - In each of Problems through Determine all...Ch. 7.2 - Consider the autonomous system dxdt=y,dydt=x+2x3....Ch. 7.2 - Consider the autonomous system ...Ch. 7.2 - The equations of motion of a certain nonlinear...Ch. 7.2 - Theorem 7.2.2 provides no information about the...Ch. 7.2 - In this problem, we show how small changes in the...Ch. 7.2 - In this problem, we show how small changes in the...Ch. 7.2 - A generalization of the damped pendulum equation...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Each of Problems 1 through 6 can be interpreted as...Ch. 7.3 - Show that (1X+2Y)24(1212)XY=(1X2Y)2+412XY. Hence...Ch. 7.3 - Consider the system (2) in the text, and assume...Ch. 7.3 - Consider the system (3) in Example 1 of the text....Ch. 7.3 - The system x=yy=yx(x0.15)(x3) Results from an...Ch. 7.3 - Bifurcation points. Consider the system...Ch. 7.3 - Bifurcation points. Consider the system Where is...Ch. 7.3 - Bifurcation points. Consider the system Where is...Ch. 7.3 - Bifurcation points. Consider the system Where is...Ch. 7.3 - In each of Problem 15 and 16: a) Find the critical...Ch. 7.3 - In each of Problem 15 and 16: Find the critical...Ch. 7.3 - Suppose that a certain pair of competing species...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - Each of Problems 1 through 5 can be interpreted as...Ch. 7.4 - In this problem, we examine the phase difference...Ch. 7.4 - a) Find the ratio of the amplitudes of the...Ch. 7.4 - Find the period of the oscillations of the prey...Ch. 7.4 - Consider the system Where and are positive...Ch. 7.4 - The average size of the prey and predator...Ch. 7.4 - In Problems 11 and 12, we consider the effect of...Ch. 7.4 - In Problems 11 and 12, we consider the effect of...Ch. 7.4 - In the Lotka-Volterra equations, the interaction...Ch. 7.4 - Harvesting in a Predator-Prey Relationship. In a...Ch. 7.4 - Harvesting in a Predator-Prey Relationship. In a...Ch. 7.4 - Harvesting in a Predator-Prey Relationship. In a...Ch. 7.5 - In each of Problems through , an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - In each of Problems through , an autonomous...Ch. 7.5 - In each of Problems 1 through 6, an autonomous...Ch. 7.5 - If x=rcos,y=rsin, show that...Ch. 7.5 - (a) Show that the system has periodic solutions...Ch. 7.5 - Determine the periodic solutions, if any, of the...Ch. 7.5 - Using Theorem, show that the linear autonomous...Ch. 7.5 - In each of Problems 11 and 12, show that the given...Ch. 7.5 - In each of Problems and , show that the given...Ch. 7.5 - Prob. 13PCh. 7.5 - By examining the graphs of vs. in Figures , , ...Ch. 7.5 - The equation u(113u2)u+u=0 Is often called the...Ch. 7.5 - Consider the system of equations...Ch. 7.5 - Consider the van der Pol system x=y,y=x+(1x2)y,...Ch. 7.5 - Problems 18 and 19 extend the consideration of the...Ch. 7.5 - Problems 18 and 19 extend the consideration of the...Ch. 7.5 - There are certain chemical reactions in which the...Ch. 7.5 - The system Is a special case of the...Ch. 7.6 - Problems through ask you to fill in some of the...Ch. 7.6 - Problems through ask you to fill in some of the...Ch. 7.6 - Ch. 7.6 - Consider the ellipsoid . Calculate along...Ch. 7.6 - In each of Problems 5 through 7, carry out the...Ch. 7.6 - In each of Problems 5 through 7, carry out the...Ch. 7.6 - In each of Problems 5 through 7, carry out the...Ch. 7.6 - For certain intervals, or windows, the Lorenz...Ch. 7.6 - Now consider values of r slightly larger than...Ch. 7.P1 - Assume that , that is, the total size of the...Ch. 7.P1 - The triangular region in the SI-plane is depicted...Ch. 7.P1 - If epidemics are identified with solution...Ch. 7.P1 - Find an equation of the form satisfied by the...Ch. 7.P1 - In the SIR system (1), describe qualitatively the...Ch. 7.P1 - Vaccinated individual are protected from acquiring...Ch. 7.P1 - Use the equation to reduce the SIRS model (3) to...Ch. 7.P2 - Consider again the system (i) Which...Ch. 7.P2 - Consider the system dxdt=x(1xy),dydt=y(0.80.6yx),...Ch. 7.P2 - Consider the system (i) in Problem 1, and assume...Ch. 7.P2 - Aconstant-yield model, applied to species x,...Ch. 7.P3 - a) Show that there are no critical points when...Ch. 7.P3 - a) Let c=1.3. Find the critical points and the...Ch. 7.P3 - The limit cycle found in Problem 2 comes into...Ch. 7.P3 - Let. Find the critical points and the...Ch. 7.P3 - Let. Find the critical points and the...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY