
Concept explainers
Landing Vehicle
NASA is planning a mission to Mars. To save money, engineers have decided to adapt one of the moon landing vehicles for the new mission. However, they are concerned about how the different gravitational forces will affect the suspension system that cushions the craft when it touches down. The acceleration resulting from gravity on the moon is 1.6 m/sec2, whereas on Mars it is 3.7 m/sec2.
The suspension system on the craft can be modeled as a damped spring mass system. In this case, the spring is below the moon lander, so the spring is slightly compressed at equilibrium, as shown in Figure 7.12.
Figure 7.12 The landing craft suspension can be represented as a damped spring-mass system. (credit “lander": NASA)
We retain the convention that down is positive. Despite the new orientation, an examination of the forces affecting the lander shows that the same differential equation can be used to model the position of the landing craft relative to equilibrium:
where m is the mass of the lander, b is the damping coef?cient, and k is the spring constant.
1. The lander has a mass of 15,000 kg and the spring is 2 m long when uncompressed. The lander is designed to compress the spring 0.5 m to reach the equilibrium position under lunar gravity. The dashpot imparts a damping force equal to 48,000 times the instantaneous velocity of the lander. Set up the differential equation that models the motion of the lander when the craft lands on the moon.

Trending nowThis is a popular solution!

Chapter 7 Solutions
Calculus Volume 3
Additional Math Textbook Solutions
University Calculus: Early Transcendentals (4th Edition)
A First Course in Probability (10th Edition)
Calculus: Early Transcendentals (2nd Edition)
Thinking Mathematically (6th Edition)
A Problem Solving Approach To Mathematics For Elementary School Teachers (13th Edition)
- Find all the solutions of the congruence 7x² + 15x = 4 (mod 111).arrow_forward) The set {1,2,..., 22} is to be split into two disjoint non-empty sets S and T in such a way that: (i) the product (mod 23) of any two elements of S lies in S; (ii) the product (mod 23) of any two elements of T lies in S; (iii) the product (mod 23) of any element of S and any element of T lies in T. Prove that the only solution is S = {1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18}, T= {5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22}.arrow_forwardPlease solve 6.31 by using the method of sections im stuck and need explanationarrow_forward
- Please don't use chatgpt.arrow_forwardSolve Problem I, 4, from the Shushu jiuzhang, which is equivalent to N = 0 (mod 11), N = 0 (mod 5), N = 4 (mod 9), N = 6 (mod 8), N = 0 (mod 7).]arrow_forward19) Consider this initial value problem: y' + y = 2y = -21² + 2t+ 14, y(0) = 0, y (0) = 0 - What is the solution of the initial value problem?arrow_forward
- 4) Consider the initial value problem " 8y +30y+25y = 0, y(0) = -2, y (0) = 8 What is the t-coordinate of the local extreme value of y = y(t) on the interval (0, ∞)? Enter your answer as a decimal accurate to three decimal places.arrow_forwardTips S ps L 50. lim x2 - 4 x-2x+2 51. lim 22 - X 52. 53. x 0 Answer lim x 0 lim 2-5 X 2x2 2 x² Answer -> 54. lim T - 3x - - 25 +5 b+1 b3b+3 55. lim X x-1 x 1 Answer 56. lim x+2 x 2 x 2 57. lim x²-x-6 x-2 x²+x-2 Answer-> 23-8 58. lim 2-22-2arrow_forward10) Which of the following is the general solution of the homogeneous second-order differential equation y + 8y + 52y=0? Here, C, C₁, and C2 are arbitrary real constants. A) y = C₁ecos(61) + C₂e*sin(61) + C B) y = et (sin(4t) + cos(6t)) + C C) y = C₁esin(6) + C₂e+ cos(6t) + C D) y = C₁esin(6) + C₂e+cos(6) E) y=e(C₁sin(61) + C₂cos(61))arrow_forward
- 3) Consider the initial value problem ' y' + 8y = 0, y(0) = -4, y (0) = 16 What is the solution of this initial value problem? A) y = -4t - 2e8t D) y = -4 + 2e-8t B) y = -2 + 2e8t C) y = -2 -2e-8t E) y = -4+ 2e8t F) y = -2t-2e-8tarrow_forward6) Consider the initial value problem y + cos πι + e²бty = 0, y(-1) = 0, y' (-1) = 0 Which of these statements are true? Select all that apply. A) There exists a nonzero real number r such that y(t) = ert is a solution of the initial value problem. B) The constant function y(t) = -1 is a solution of this initial value problem for all real numbers t. C) The constant function y(t) = 0 is the unique solution of this initial value problem on the interval (-∞, ∞). D) This initial value problem has only one solution on the interval (-7, 5). E) There must exist a function y = q(t) that satisfies this initial value problem on the interval (-7,∞).arrow_forward7) Compute the Wronskian of the pair of functions sin(5t) and cos(5t). A) -5 B) 4 C) 1 D) -4 E) 5arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningElementary AlgebraAlgebraISBN:9780998625713Author:Lynn Marecek, MaryAnne Anthony-SmithPublisher:OpenStax - Rice University

