Problems 91–94 refer to the following: If a decrease in demand for one product results in an increase in demand for another product, the two products are said to be competitive, or substitute,
products. (Real whipping cream and imitation whipping cream are examples of competitive, or substitute, products.) If a decrease in demand for one product results in a decrease in demand for another product, the two products are said to be complementary products. (Fishing boats and outboard motors are examples of complementary products.) Partial derivatives can be used to test whether two products are competitive, complementary, or neither. We start with demand functions for two products such that the demand for either depends on the prices for both:
The variables x and y represent the number of units demanded of products A and B, respectively, at a price p for 1 unit of product A and a price q for I unit of product B. Normally, if the price of A increases while the price of B is held constant, then the demand for A will decrease; that is, fp(p, q) < 0. Then, if A and B are competitive products, the demand for B will increase; that is, gr(p, q) > 0. Similarly, if the price of B increases while the price of A is held constant, the demand for B will decrease; that is, gq(p, q) < 0. Then, if A and B are competitive products, the demand for A will increase; that is, fq(p, q) > 0. Reasoning similarly for complementary products, we arrive at the following test:
Test for Competitive and Complementary Products
Partial Derivatives | Products A and B |
fq(p, q) > and gp(p, q) > 0 | Competitive (substitute) |
fq(p, q) < and gp(p, q) < 0 | Complementary |
fq(p, q) ≥ and gp(p, q) ≤ 0 | Neither |
fq(p, q) ≤ and gp(p, q) ≥ 0 | Neither |
Use this test in Problems 91-94 to determine whether the indicated products are competitive, complementary, or neither.
94. Product demand. The monthly demand equations for the sale of tennis rackets and tennis balls in a sporting goods store are
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
EP CALCULUS F/BUS.,ECON.-BRIEF-ACCESS
- Please give a handwritten solution without use of AIarrow_forwardPlease solve handwritten, without use of AIarrow_forwardUse Euler's method with step size h = 0.1 to approximate the solution to the initial value problem y' = x - y², y(3) = 0, at the points x = 3.1, 3.2, 3.3, 3.4, and 3.5.arrow_forward
- 2. Let f(x) = 2x² + 6. Find and completely simplify the rate of change on the interval [3,3+h]. (5 points)arrow_forwardQ4. a) A periodic waveform f(t) is shown in Figure 2 f(t) Vo Figure 2 T with f(t+mT) = f(t) and m is an integer. Also, V₁ = 3, t = 1, T = 2. (i) (ii) Derive the formulae for the complex Fourier coefficients c for f(t). Sketch the amplitude spectrum of ƒ (t) (including the components up to n = ±3).arrow_forwardPLease solve handwritten, dont use AI.arrow_forward
- please solve the question handwritten without AIarrow_forwardCan you explain this statement below in layman's terms? Secondary Analysis with Generalized Linear Mixed Model with clustering for Hospital Center and ICUvs Ward EnrolmentIn a secondary adjusted analysis we used generalized linear mixed models with random effects forcenter (a stratification variable in the primary analyses). In this analysis, the relative risk for the primaryoutcome of 90-day mortality for 7 versus 14 days of antibiotics was 0.90 (95% Confidence Interval [CI]0.78, 1.05).arrow_forward2 Solve for (x, y, z) in the set of linear, inhomogeneous equations: 2x+5y + z = 2 x+y+2x=1 2+52=3.arrow_forward
- Prove by induction that for any natural number N, 1 N Σ42 = 6 N(N + 1)(2N + 1). k=1 Indicate clearly where you use the inductive hypothesis.arrow_forward2x-y=1 x+2y=7 y = 2x + 2 3x + 2y = 4 x+3y=0 x-3y=6 8 4x-2y=7 x + 3y = 7 10 2x-2y=5 2x + 3y+ 1 = 0 Ke int lin Chapter 14arrow_forward(a) (b) Let A, B be disjoint subsets of a set X. Show that AC Bc. Use proof by contradiction to show that for any a, b = R, if a is rational and b is irrational then ba is irrational.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning