Problems 91 – 94 refer to the following: If a decrease in demand for one product results in an increase in demand for another product , the two products are said to be competitive , or substitute , products . ( Real whipping cream and imitation whipping cream are examples of competitive , or substitute , products .) If a decrease in demand for one product results in a decrease in demand for another product , the two products are said to be complementary products. ( Fishing boats and outboard motors are examples of complementary products .) Partial derivatives can be used to test whether two products are competitive , complementary , or neither . We start with demand functions for two products such that the demand for either depends on the prices for both: x = f ( p , q ) Demand function for product A y = g ( p , q ) Demand function for product B The variables x and y represent the number of units demanded of products A and B , respectively , at a price p for 1 unit of product A and a price q for I unit of product B . Normally , if the price of A increases while the price of B is held constant , then the demand for A will decrease; that is , f p ( p , q ) < 0. Then , if A and B are competitive products , the demand for B will increase; that is , g r ( p , q ) > 0. Similarly , if the price of B increases while the price of A is held constant , the demand for B will decrease; that is , g q ( p , q ) < 0. Then , if A and B are competitive products , the demand for A will increase; that is , f q ( p , q ) > 0. Reasoning similarly for complementary products , we arrive at the following test: Test for Competitive and Complementary Products Partial Derivatives Products A and B f q ( p , q ) > and g p ( p , q ) > 0 Competitive (substitute) f q ( p , q ) < and g p ( p , q ) < 0 Complementary f q ( p , q ) ≥ and g p ( p , q ) ≤ 0 Neither f q ( p , q ) ≤ and g p ( p , q ) ≥ 0 Neither Use this test in Problems 91-94 to determine whether the indicated products are competitive , complementary , or neither . 92. Product demand. The daily demand equations for the sale of brand A coffee and brand B coffee in a supermarket are x = f ( p , q ) = 200 − 5 p + 4 q Brand A coffee y = g ( p , q ) = 300 + 2 p − 4 q Brand B coffee
Problems 91 – 94 refer to the following: If a decrease in demand for one product results in an increase in demand for another product , the two products are said to be competitive , or substitute , products . ( Real whipping cream and imitation whipping cream are examples of competitive , or substitute , products .) If a decrease in demand for one product results in a decrease in demand for another product , the two products are said to be complementary products. ( Fishing boats and outboard motors are examples of complementary products .) Partial derivatives can be used to test whether two products are competitive , complementary , or neither . We start with demand functions for two products such that the demand for either depends on the prices for both: x = f ( p , q ) Demand function for product A y = g ( p , q ) Demand function for product B The variables x and y represent the number of units demanded of products A and B , respectively , at a price p for 1 unit of product A and a price q for I unit of product B . Normally , if the price of A increases while the price of B is held constant , then the demand for A will decrease; that is , f p ( p , q ) < 0. Then , if A and B are competitive products , the demand for B will increase; that is , g r ( p , q ) > 0. Similarly , if the price of B increases while the price of A is held constant , the demand for B will decrease; that is , g q ( p , q ) < 0. Then , if A and B are competitive products , the demand for A will increase; that is , f q ( p , q ) > 0. Reasoning similarly for complementary products , we arrive at the following test: Test for Competitive and Complementary Products Partial Derivatives Products A and B f q ( p , q ) > and g p ( p , q ) > 0 Competitive (substitute) f q ( p , q ) < and g p ( p , q ) < 0 Complementary f q ( p , q ) ≥ and g p ( p , q ) ≤ 0 Neither f q ( p , q ) ≤ and g p ( p , q ) ≥ 0 Neither Use this test in Problems 91-94 to determine whether the indicated products are competitive , complementary , or neither . 92. Product demand. The daily demand equations for the sale of brand A coffee and brand B coffee in a supermarket are x = f ( p , q ) = 200 − 5 p + 4 q Brand A coffee y = g ( p , q ) = 300 + 2 p − 4 q Brand B coffee
Solution Summary: The author analyzes the daily demand equations for the sale of brand A coffee and brand B coffee in a supermarket.
Problems 91–94 refer to the following: If a decrease in demand for one product results in an increase in demand for another product, the two products are said to be competitive, or substitute,
products. (Real whipping cream and imitation whipping cream are examples of competitive, or substitute, products.) If a decrease in demand for one product results in a decrease in demand for another product, the two products are said to becomplementary products. (Fishing boats and outboard motors are examples of complementary products.) Partial derivatives can be used to test whether two products are competitive, complementary, or neither. We start with demand functions for two products such that the demand for either depends on the prices for both:
x
=
f
(
p
,
q
)
Demand
function
for
product
A
y
=
g
(
p
,
q
)
Demand
function
for
product
B
The variables x and y represent the number of units demanded of products A and B, respectively, at a price p for 1 unit of product A and a price q for I unit of product B. Normally, if the price of A increases while the price of B is held constant, then the demand for A will decrease; that is, fp(p, q) < 0. Then, if A and B are competitive products, the demand for B will increase; that is, gr(p, q) > 0. Similarly, if the price of B increases while the price of A is held constant, the demand for B will decrease; that is, gq(p, q) < 0. Then, if A and B are competitive products, the demand for A will increase; that is, fq(p, q) > 0. Reasoning similarly for complementary products, we arrive at the following test:
Test for Competitive and Complementary Products
Partial Derivatives
Products A and B
fq(p, q) > and gp(p, q) > 0
Competitive (substitute)
fq(p, q) < and gp(p, q) < 0
Complementary
fq(p, q) ≥ and gp(p, q) ≤ 0
Neither
fq(p, q) ≤ and gp(p, q) ≥ 0
Neither
Use this test in Problems 91-94 to determine whether the indicated products are competitive, complementary, or neither.
92. Product demand. The daily demand equations for the sale of brand A coffee and brand B coffee in a supermarket are
x
=
f
(
p
,
q
)
=
200
−
5
p
+
4
q
Brand
A
coffee
y
=
g
(
p
,
q
)
=
300
+
2
p
−
4
q
Brand
B
coffee
You may need to use the appropriate appendix table or technology to answer this question.
You are given the following information obtained from a random sample of 4 observations.
24
48
31
57
You want to determine whether or not the mean of the population from which this sample was taken is significantly different from 49. (Assume the population is normally distributed.)
(a)
State the null and the alternative hypotheses. (Enter != for ≠ as needed.)
H0:
Ha:
(b)
Determine the test statistic. (Round your answer to three decimal places.)
(c)
Determine the p-value, and at the 5% level of significance, test to determine whether or not the mean of the population is significantly different from 49.
Find the p-value. (Round your answer to four decimal places.)
p-value =
State your conclusion.
Reject H0. There is insufficient evidence to conclude that the mean of the population is different from 49.Do not reject H0. There is sufficient evidence to conclude that the…
Chapter 7 Solutions
Pearson eText for Calculus for Business, Economics, Life Sciences, and Social Sciences, Brief Version -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Solve ANY Optimization Problem in 5 Steps w/ Examples. What are they and How do you solve them?; Author: Ace Tutors;https://www.youtube.com/watch?v=BfOSKc_sncg;License: Standard YouTube License, CC-BY
Types of solution in LPP|Basic|Multiple solution|Unbounded|Infeasible|GTU|Special case of LP problem; Author: Mechanical Engineering Management;https://www.youtube.com/watch?v=F-D2WICq8Sk;License: Standard YouTube License, CC-BY