
Concept explainers
(a)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the
functional group which is used as main suffix. - Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the
alkane is replaced by ‘yne’ ending, the name of alkyne is obtained. - Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of
alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain. - When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(b)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(c)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(d)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(e)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.
(f)
Interpretation:
The systematic name of the given compound should be identified.
Concept Introduction:
IUPAC NOMENCLATURE RULES:
- The first step is to find out the parent chain of the hydrocarbon. Parent chain should contain maximum number of multiple bonds, maximum number of substituents of the functional group which is used as main suffix.
- Other functional group, if any, should be identified and name it as prefix.
- Numbering should be done in such a way that to get the lowest number for suffix functional group, multiple bonds.
- The punctuation used to separate numbers is commas and hyphen is used to separate a number and alphabet.
- If the ‘ane’ ending of the alkane is replaced by ‘yne’ ending, the name of alkyne is obtained.
- Select the longest chain which contain the triple bond in such a way to get lowest value for the functional group.
- Two types of alkynes will be there according to the position of triple bond. Terminal alkyne is the one which contain triple bond at the end of the chain and internal alkyne is the one which contain triple bond not at the end but present in any other positions in the chain.
- When the counting is done from either sides of triple bond in a compound which contain same number for the functional group suffix, the correct name will be the one which have lowest substituent number. In the case of more than one substituent, alphabetical order should be followed.

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Student's Study Guide and Solutions Manual for Organic Chemistry
- Including activity, calculate the solubility of Pb(IO3)2 in a matrix of 0.020 M Mg(NO3)2.arrow_forwardIncluding activity coefficients, find [Hg22+] in saturated Hg2Br2 in 0.00100 M KBr.arrow_forwardIncluding activity, calculate the pH of a 0.010 M HCl solution with an ionic strength of 0.10 M.arrow_forward
- Can I please get the graph 1: Concentration vs. Density?arrow_forwardOrder the following series of compounds from highest to lowest reactivity to electrophilic aromatic substitution, explaining your answer: 2-nitrophenol, p-Toluidine, N-(4-methylphenyl)acetamide, 4-methylbenzonitrile, 4-(trifluoromethyl)benzonitrile.arrow_forwardOrdene la siguiente serie de compuestos de mayor a menor reactividad a la sustitución aromática electrofílica, explicando su respuesta: ácido bencenosulfónico, fluorobenceno, etilbenceno, clorobenceno, terc-butilbenceno, acetofenona.arrow_forward
- Can I please get all final concentrations please!arrow_forwardState the detailed mechanism of the reaction of benzene with isopropanol in sulfuric acid.arrow_forwardDo not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction. For the decomposition reaction of N2O5(g): 2 N2O5(g) · 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 -> NO2 + NO3_(K1) NO2 + NO3 →> N2O5 (k-1) → NO2 + NO3 → NO2 + O2 + NO (K2) NO + N2O5 → NO2 + NO2 + NO2 (K3) Give the expression for the acceptable rate. (A). d[N₂O] dt = -1 2k,k₂[N205] k₁+k₂ d[N₂O5] (B). dt =-k₁[N₂O₂] + k₁[NO2][NO3] - k₂[NO2]³ (C). d[N₂O] dt =-k₁[N₂O] + k₁[N205] - K3 [NO] [N205] (D). d[N2O5] =-k₁[NO] - K3[NO] [N₂05] dtarrow_forward
- A 0.10 M solution of acetic acid (CH3COOH, Ka = 1.8 x 10^-5) is titrated with a 0.0250 M solution of magnesium hydroxide (Mg(OH)2). If 10.0 mL of the acid solution is titrated with 20.0 mL of the base solution, what is the pH of the resulting solution?arrow_forwardFor the decomposition reaction of N2O5(g): 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 NO2 + NO3 (K1) | NO2 + NO3 → N2O5 (k-1) | NO2 + NO3 NO2 + O2 + NO (k2) | NO + N2O51 NO2 + NO2 + NO2 (K3) → Give the expression for the acceptable rate. → → (A). d[N205] dt == 2k,k₂[N₂O₂] k₁+k₁₂ (B). d[N2O5] =-k₁[N₂O] + k₁[NO₂] [NO3] - k₂[NO₂]³ dt (C). d[N2O5] =-k₁[N₂O] + k [NO] - k₂[NO] [NO] d[N2O5] (D). = dt = -k₁[N2O5] - k¸[NO][N₂05] dt Do not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction.arrow_forwardFor the decomposition reaction of N2O5(g): 2 N2O5(g) → 4 NO2(g) + O2(g), the following mechanism has been proposed: N2O5 NO2 + NO3 (K1) | NO2 + NO3 → N2O5 (k-1) | NO2 + NO3 NO2 + O2 + NO (k2) | NO + N2O51 NO2 + NO2 + NO2 (K3) → Give the expression for the acceptable rate. → → (A). d[N205] dt == 2k,k₂[N₂O₂] k₁+k₁₂ (B). d[N2O5] =-k₁[N₂O] + k₁[NO₂] [NO3] - k₂[NO₂]³ dt (C). d[N2O5] =-k₁[N₂O] + k [NO] - k₂[NO] [NO] d[N2O5] (D). = dt = -k₁[N2O5] - k¸[NO][N₂05] dt Do not apply the calculations, based on the approximation of the stationary state, to make them perform correctly. Basta discard the 3 responses that you encounter that are obviously erroneous if you apply the formula to determine the speed of a reaction.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning




