For Exercises 41–50, write the standard form of the equation of the hyperbola subject to the given conditions. (See Example 5)
Corners of the reference rectangle:
Want to see the full answer?
Check out a sample textbook solutionChapter 7 Solutions
COLLEGE ALGEBRA CUSTOM -ALEKS ACCESS
- For Exercises 67–70, identify the equation as representing an ellipse or a hyperbola, and match the equation with the graph. (x – 5)² 67. (y + 2)² = 1 (x – 5)? 68. (y + 2)? = 1 49 36 36 49 (x - 5)? 69. (y + 2)² = 1 (y + 2)² = 1 (x - 5)? 49 36 70. 49 36 А. В. С. D. 15 12 41 6 -6-4-2 4 6 8 10 12 14 4 6 8 10 12 14 -6 -4 2. 4 6 8 10l 12 14 -6 1k 15 18 21 -6arrow_forwardWhich are the foci for the hyperbola modeled by the equation (X-32 (x-1)²-1? 36 13 O (1. 10) and (1,-4) O (3.8) and (3, -8) O (1.9) and (1, -3) O (-6, 0) and (6, 0)arrow_forwardFind a or k so that the points (-5,-8) and (1,-25) lie on the parabola y=a(x+3)²+karrow_forward
- For Exercises 27–34, an equation of a parabola x = 4py or y = 4px is given. a. Identify the vertex, value of p, focus, and focal diameter of the parabola. b. Identify the endpoints of the latus rectum. c. Graph the parabola. d. Write equations for the directrix and axis of symmetry. (See Examples 2-3) 27. x -4y 28. x -20y 29. 10y = 80x 30. 3y = 12x 31. 4x 40y 32. 2x 14y 33. y = 34. y = -2x = -X %3Darrow_forward7. Write an equation for each parabola. a) (0, 11) 4 (4, –5) b) YA (-6, 4) 4 (-5,3) -6 -2 0 x c) YA 12 (4,13) 14 +4 (6, –7) -carrow_forwardWhat is the vertex of the parabola y = (x+3)²-4? A B с D (3,4) (-3,4) (-3,-4) (3,-4)arrow_forward
- In Exercises 17-30, find the standard form of the equation of each parabola satisfying the given conditions. 17. Focus: (7,0); Directrix: x = -7 18. Focus: (9,0); Directrix: x = -9 19. Focus: (-5,0); Directrix: x = 5 20. Focus: (-10, 0); Directrix: x = 10 21. Focus: (0, 15); Directrix: y = -15 22. Focus: (0,20); Directrix: y = -20 23. Focus: (0, –25); Directrix: y = 25 24. Focus: (0, -15); Directrix: y = 15 25. Vertex: (2, -3); Focus: (2, -5) 26. Vertex: (5, -2); Focus: (7, -2) 27. Focus: (3, 2); Directrix: x = -1 28. Focus: (2, 4); Directrix: x = -4 29. Focus: (-3, 4); Directrix: y = 2 30. Focus: (7, –1); Directrix: y = -9arrow_forwardThe focus of the parabola y? + 8x = 0 has coordinates o (0,-4) (0,4) (-8,0) 0(-2,0)arrow_forwardWrite an equation of the parabola in intercept form that passes through (0, – 18) with x-intercepts of 9 and 1. An equation of the parabola is y =arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning