Precision Machining Technology
3rd Edition
ISBN: 9781337795302
Author: Peter, Hoffman.
Publisher: Cengage Learning,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.2, Problem 10RQ
Wheel A: 32A60H8V Wheel B: 39C100L6V
What is the abrasive type for each wheel?
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Fy = 100 N
Fx = 100 N
Z
a = 500 mm
F₂ = 500 N
b = 1000 mm
Figure 2: Schematics for problem 3.
1. Draw the moment (M), axial (N), and shear (S) diagrams. Please note that this is a 3D problem and you
will have moment (M) and shear (S) along two different axes. That means that you will have a total of 5
diagrams.
I tried solving this one but have no idea where I went wrong can you please help me out with this?
Question 1.
A tube rotates in the horizontal xy plane with a constant angular velocity w about the z-axis. A
particle of mass m is released from a radial distance R when the tube is in the position shown.
This problem is based on problem 3.2 in the text.
y
ω
R
m
2R
Figure 1
X
a) Draw a free body diagram of the particle if the tube is frictionless.
b) Draw a free body diagram of the particle if the coefficient of friction between the sides of the
tube and the particle is μs = flk = fl.
c) For the case where the tube is frictionless, what is the radial speed at which the particle
leaves the tube?
d) For the case where there is friction, derive a differential equation that would allow you to
solve for the radius of the particle as a function of time. I'm only looking for the differential
equation. DO NOT solve it.
e) If there is no friction, what is the angle of the tube when the particle exits?
• Hint: You may need to solve a differential equation for the last part. The "potentially…
Chapter 7 Solutions
Precision Machining Technology
Ch. 7.1 - What are three benefits of precision grinding?Ch. 7.1 - What is the major use of the surface grinder?Ch. 7.1 - What are the two spindle types used for surface...Ch. 7.1 - What are the two types of table movements used for...Ch. 7.1 - Label the parts of the surface grinder.Ch. 7.1 - What are three types of cylindrical grinders?Ch. 7.1 - Tool and cutter grinders can be used to _______...Ch. 7.2 - What wheel shapes are commonly used for surface...Ch. 7.2 - What abrasive is commonly used to grind steels?Ch. 7.2 - What abrasive is used to grind nonferrous metals,...
Ch. 7.2 - What does CBN stand for?Ch. 7.2 - What superabrasive is a good choice for grinding...Ch. 7.2 - The grade of a wheel describes its __________ on a...Ch. 7.2 - Prob. 7RQCh. 7.2 - Prob. 8RQCh. 7.2 - Generally, harder wheels should be used to grind...Ch. 7.2 - Wheel A: 32A60H8V Wheel B: 39C100L6V What is the...Ch. 7.2 - Wheel A: 32A60H8V Wheel B: 39C100L6V Which wheel...Ch. 7.2 - Wheel A: 32A60H8V Wheel B: 39C100L6V Which wheel...Ch. 7.2 - Wheel A: 32A60H8V Wheel B: 39C100L6V Which wheel...Ch. 7.2 - Wheel A: 32A60H8V Wheel B: 39C100L6V What type of...Ch. 7.3 - List five surface grinder safety guidelines.Ch. 7.3 - What should be done to every grinding wheel before...Ch. 7.3 - When using a magnetic workholding device, the work...Ch. 7.3 - When using a magnetic chuck to hold a workpiece...Ch. 7.3 - Describe the difference between wheel truing and...Ch. 7.3 - What tool is used to true and dress an aluminum...Ch. 7.3 - How is a CBN wheel trued and dressed?Ch. 7.3 - Depth-of-cut range for surface grinding is: a....Ch. 7.3 - What should be done to a magnetic chuck when it...Ch. 7.3 - What workholding device can extend the magnetic...Ch. 7.3 - What workholding device can be used when grinding...Ch. 7.3 - Briefly describe the method for grinding two...Ch. 7.3 - List three types of workpiece features that can be...Ch. 7.3 - List three possible solutions to eliminate bum...Ch. 7.3 - What can cause scratches on the surface of a...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- I tried this problem but I can't seem to figure out what I am missing here can you please help me?arrow_forwardSolve 4.9 row a USING THE ANALYTICAL METHODarrow_forwardcutting Instructions: Do not copy the drawing. Draw In third-angle orthographic projection, and to scale 1:1, the following views of the hinge: A sectional front view on A-A A top view ⚫ A right view (Show all hidden detail) Show the cutting plane in the top view . Label the sectioned view Note: All views must comply with the SABS 0111 Code of Practice for Engineering Drawing. Galaxy A05s Assessment criteria: ⚫ Sectional front view 026 12 042 66 [30] 11 10arrow_forward
- 1. Plot the moment (M), axial (N), and shear (S) diagrams as functions of z. a) b) F₁ = 1250 N F₁ = 600 N M₁ = 350 000 N mm F2 = 500 N 200 N a = 600 mm b=1000 mm a=750 mm b = 1000 mm d) M₁ = 350 000 N mm F₁ = 600 N F₂ =200 N a = 600 mm b = 1000 mm M₁ 175 000 Nmm F = 900 N a-250 mm b-1000 mm -250 mm. Figure 1: Schematics problem 1.arrow_forwardGiven the following cross-sections (with units in mm): b) t=2 b=25 h=25 t = 1.5 b=20 b=25 t=2 I t = 1.5 a=10 b=15 h-25 b=15 t=3 T h=25 Figure 3: Cross-sections for problem 2. 1. For each of them, calculate the position of the centroid of area with respect to the given coordinate system and report them in the table below. 2. For each of them, calculate the second moments of inertia I... and I, around their respective centroid of area and report them in the table below. Note: use the parallel axes theorem as much as possible to minimize the need to solve integrals. Centroid position x y box Moment of inertia lyy by a) b) c) d) e)arrow_forwardProblem 1: Analyze the canard-wing combination shown in Fig. 1. The canard and wing are made of the same airfoil section and have AR AR, S = 0.25, and = 0.45% 1. Develop an expression for the moment coefficient about the center of gravity in terms of the shown parameters (, and zg) and the three-dimensional aerodynamic characteristics of the used wing/canard (CL C and CM). 2. What is the range of the cg location for this configuration to be statically stable? You may simplify the problem by neglecting the upwash (downwash) effects between the lifting surfaces and the drag contribution to the moment. You may also assume small angle approximation. Figure 1: Canard-Wing Configuration.arrow_forward
- Problem 2: Consider the Boeing 747 jet transport, whose layout is shown in Fig. 2 and has the following characteristics: xoa 0.25, 8 5500/2, b 195.68ft, 27.31ft, AR, 3.57, V = 0.887 Determine the wing and tail contributions to the CM-a curve. You may want to assume CM, reasonable assumptions (e.g., -0.09, 0, -4°. i=0.0°, and i = -2.0°. Make any other 0.9).arrow_forwardZ Fy = 100 N Fx = 100 N F₂ = 500 N a = 500 mm b = 1000 mm Figure 2: Schematics for problem 3. 1. Draw the moment (M), axial (N), and shear (S) diagrams. Please note that this is a 3D problem and you will have moment (M) and shear (S) along two different axes. That means that you will have a total of 5 diagrams.arrow_forwardAn ideal gas with MW of 29 g/mol, cp = 1.044 kJ/kgK and c₁ = 0.745 kJ/kgK contained in a cylinder-piston assembly initially has a pressure of 175 kPa, a temperature of 22°C, and a volume of 0.30 m³. It is heated slowly at constant volume (process 1-2) until the pressure is doubled. It is then expanded slowly at constant pressure (process 2-3) until the volume is doubled. Draw a figure of the system and the PV diagram showing each state and the path each process takes. Determine the total work done by the system and total heat added (J) in the combined process.arrow_forward
- please explain each method used, thank youarrow_forwardDetermine the resultant loadings acting on the cross sections at points D and E of the frame.arrow_forwardA spring of stiffness factor 98 N/m is pulled through 20 cm. Find the restoring force and compute the mass which should be attached so as to stretch in spring by same amount.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Precision Machining Technology (MindTap Course Li...Mechanical EngineeringISBN:9781285444543Author:Peter J. Hoffman, Eric S. Hopewell, Brian JanesPublisher:Cengage LearningAutomotive Technology: A Systems Approach (MindTa...Mechanical EngineeringISBN:9781133612315Author:Jack Erjavec, Rob ThompsonPublisher:Cengage Learning
Precision Machining Technology (MindTap Course Li...
Mechanical Engineering
ISBN:9781285444543
Author:Peter J. Hoffman, Eric S. Hopewell, Brian Janes
Publisher:Cengage Learning
Automotive Technology: A Systems Approach (MindTa...
Mechanical Engineering
ISBN:9781133612315
Author:Jack Erjavec, Rob Thompson
Publisher:Cengage Learning
Force | Free Body Diagrams | Physics | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=4Bwwq1munB0;License: Standard YouTube License, CC-BY