
Concept explainers
(a)
To find: The weight change for each subject.
(a)

Answer to Problem 38E
Solution: The table for weight change is as follows,
Weight before |
Weight after |
Weight change |
55.7 |
61.7 |
6 |
54.9 |
58.8 |
3.9 |
59.6 |
66 |
6.4 |
62.3 |
66.2 |
3.9 |
74.2 |
79 |
4.8 |
75.6 |
82.3 |
6.7 |
70.7 |
74.3 |
3.6 |
53.3 |
59.3 |
6 |
73.3 |
79.1 |
5.8 |
63.4 |
66 |
2.6 |
68.1 |
73.4 |
5.3 |
73.7 |
76.9 |
3.2 |
91.7 |
93.1 |
1.4 |
55.9 |
63 |
7.1 |
61.7 |
68.2 |
6.5 |
57.8 |
60.3 |
2.5 |
Explanation of Solution
Calculation:
To calculate weight change follow the below mentioned steps in Minitab;
Step 1: Enter the variable name as ‘Weight before’ in column C1 and enter the data of ‘weight before’ and enter the variable name as ‘Weight after’ in column C2 and enter the data of ‘Weight after’.
Step 2: Enter variable name as ‘Weight change’ in column C3.
Step 3: Go to
Step 4: In the dialog box that appears, select ‘Weight Change’ in ‘Store result in variable’.
Step 5: Enter 'Weight after'-'Weight before' in ‘Expression’. Click ‘OK’ on dialog box.
From Minitab result, the table for weight change is as follows,
Weight before |
Weight after |
Weight change |
55.7 |
61.7 |
6 |
54.9 |
58.8 |
3.9 |
59.6 |
66 |
6.4 |
62.3 |
66.2 |
3.9 |
74.2 |
79 |
4.8 |
75.6 |
82.3 |
6.7 |
70.7 |
74.3 |
3.6 |
53.3 |
59.3 |
6 |
73.3 |
79.1 |
5.8 |
63.4 |
66 |
2.6 |
68.1 |
73.4 |
5.3 |
73.7 |
76.9 |
3.2 |
91.7 |
93.1 |
1.4 |
55.9 |
63 |
7.1 |
61.7 |
68.2 |
6.5 |
57.8 |
60.3 |
2.5 |
(b)
Section 1:
To find: The
(b)
Section 1:

Answer to Problem 38E
Solution: The required mean is
Explanation of Solution
Calculation:
To calculate the mean of ‘weight change’ follow the below mentioned steps in Minitab;
Step 1: Follow the step 1 to 5 performed in part (a).
Step 2: Go to
Step 3: In dialog box that appears select ‘Weight change’ under the field marked as ‘Variables’ and click on ‘Statistics’.
Step 4: In dialog box that appears select ‘None’ and then ‘Mean’ and click OK twice.
From the Minitab output, the mean is
Section 2:
To find: The standard deviation of weight change.
Section 2:

Answer to Problem 38E
Solution: The required standard deviation is 1.746 kg.
Explanation of Solution
Calculation:
To calculate standard deviation of weight change follow the below mentioned steps in Minitab;
Step 1: Follow the step 1 to 5 performed in part (a).
Step 2: Go to
Step 3: In dialog box that appears select ‘Weight change’ under the field marked as ‘Variables’ and then click on ‘Statistics’.
Step 4: In dialog box that appears select ‘None’ and then ‘standard deviation’ and click ‘OK’ twice.
From the Minitab results, the standard deviation is 1.746.
(c)
Section 1:
To find: The standard error of the weight change.
(c)
Section 1:

Answer to Problem 38E
Solution: The standard error is 0.436 kg.
Explanation of Solution
Calculation:
To obtain the standard error of weight change follow the below mentioned steps in Minitab;
Step 1: Follow the step 1 to 5 performed in part (a).
Step 2: Go to
Step 3: In dialog box that appears select ‘Weight change’ under the field marked as ‘Variables’. Then click on ‘Statistics’.
Step 4: In dialog box that appears select ‘None’ and then ‘SE of mean’. Then click ‘Ok’ on both dialog box.
From Minitab result, the standard error is 0.436 kg.
Section 2:
To find: The margin of error for 95% confidence interval for mean weight change.
Section 2:

Answer to Problem 38E
Solution: The margin of error is 0.929 kg.
Explanation of Solution
Calculation:
The formula to calculate the margin of error is as follows,
Where
Hence the margin of error for mean weight change is 0.929 kg.
Section 3:
To find: The
Section 3:

Answer to Problem 38E
Solution: The required confidence interval is
Explanation of Solution
Calculation:
The confidence interval is an interval for which there are 95% chances that it contains the population parameter (population mean).
To calculate confidence interval, follow the below mentioned steps in Minitab;
Step 1: Enter the provided data into Minitab and enter variable name as ‘Weight change’
Step 2: Go to ‘Stat’ then point on ‘Basic Statistics’ and select ‘1-sample-t’.
Step 3: In the dialog box that appears select ‘Weight change’ under the field marked as ‘sample in columns’ and click on ‘option’.
Step 4: In the dialog box that appears, enter ‘95.0’ under the field marked as ‘confidence level’ and select ‘not equal’ under the field marked as ‘Alternative hypothesis’.
From Minitab results, 95% confidence interval in is
(d)
Section 1:
To find: The mean weight gain in pounds.
(d)
Section 1:

Answer to Problem 38E
Solution: The mean weight decrement in pounds is 10.4082 pounds.
Explanation of Solution
Calculation:
Consider
Where c is the constant.
Also,
So here,
Hence, the mean weight decrement in pounds will be 10.4082 pounds.
Section 2:
To find: The standard deviation of weight gains in pounds.
Section 2:

Answer to Problem 38E
Solution: The standard deviation of weight gain in pounds is 3.8412 pounds.
Explanation of Solution
Calculation:
Consider
Where c is the constant.
Also,
So here,
Hence, the standard deviation of weight gain in pounds will be 3.8412 pounds.
Section 3:
To find: The confidence interval of weight gain in pounds.
Section 3:

Answer to Problem 38E
Solution: The confidence interval of weight gain in pounds is
Explanation of Solution
Calculation:
The lower limit and the upper limit of the confidence interval are changed in pounds by multiplying them with 2.2. So the new confidence interval in pounds will be,
The lower limit,
The upper limit,
So the confidence interval will be
(e)
Section 1:
To explain: The hypothesis to test whether the weight change is equal to 16 lb.
(e)
Section 1:

Answer to Problem 38E
Solution: The null hypothesis is,
And the alternative hypothesis is,
Explanation of Solution
Against the alternative hypothesis which assumes that the mean weight
Section 2:
To find: The value of test statistic.
Section 2:

Answer to Problem 38E
Solution: The value of test statistic is
Explanation of Solution
Calculation:
To calculate the test statistic, follow the below mentioned steps in Minitab;
Step 1: Go to
Step 2: In the dialog box that appears click on ‘Summarized data’ Enter the values of sample size, mean, standard deviation. Then click on ‘Option’.
Step 3: Click on ‘Perform hypothesis test’ and enter ‘16’ under the field as ‘Hypothesized mean’.
Step 4: In the dialog box that appears, enter ‘95.0’ in confidence level and select ‘not equal’ under the field as ‘Alternative hypothesis’. Then click ‘Ok’.
From Minitab results, the value of test statistic is
Section 3:
To find: The P- value of the test statistic.
Section 3:

Answer to Problem 38E
Solution: The P- value is 0.000.
Explanation of Solution
Calculation:
To calculate the test statistic, follow the below mentioned steps in Minitab;
Step 1: Go to
Step 2: In the dialog box that appears click on ‘Summarized data’ Enter the values of sample size, mean, standard deviation. Then click on ‘Option’.
Step 3: Click on ‘Perform hypothesis test’ and enter ‘16’ under the field as ‘Hypothesized mean’.
Step 4: In the dialog box that appears, enter ‘95.0’ in confidence level and select ‘not equal’ under the field as ‘Alternative hypothesis’. Then click ‘Ok’.
From Minitab results, the P-value is 0.000
Section 4:
To explain: The test results.
Section 4:

Answer to Problem 38E
Solution: The null hypothesis is rejected and it is concluded that the mean weight gain is not 16 lb.
Explanation of Solution
(f)
To explain: The obtained results.
(f)

Answer to Problem 38E
Solution: The mean of ‘weight change’ is
Explanation of Solution
Want to see more full solutions like this?
Chapter 7 Solutions
EBK INTRODUCTION TO THE PRACTICE OF STA
- ian income of $50,000. erty rate of 13. Using data from 50 workers, a researcher estimates Wage = Bo+B,Education + B₂Experience + B3Age+e, where Wage is the hourly wage rate and Education, Experience, and Age are the years of higher education, the years of experience, and the age of the worker, respectively. A portion of the regression results is shown in the following table. ni ogolloo bash 1 Standard Coefficients error t stat p-value Intercept 7.87 4.09 1.93 0.0603 Education 1.44 0.34 4.24 0.0001 Experience 0.45 0.14 3.16 0.0028 Age -0.01 0.08 -0.14 0.8920 a. Interpret the estimated coefficients for Education and Experience. b. Predict the hourly wage rate for a 30-year-old worker with four years of higher education and three years of experience.arrow_forward1. If a firm spends more on advertising, is it likely to increase sales? Data on annual sales (in $100,000s) and advertising expenditures (in $10,000s) were collected for 20 firms in order to estimate the model Sales = Po + B₁Advertising + ε. A portion of the regression results is shown in the accompanying table. Intercept Advertising Standard Coefficients Error t Stat p-value -7.42 1.46 -5.09 7.66E-05 0.42 0.05 8.70 7.26E-08 a. Interpret the estimated slope coefficient. b. What is the sample regression equation? C. Predict the sales for a firm that spends $500,000 annually on advertising.arrow_forwardCan you help me solve problem 38 with steps im stuck.arrow_forward
- How do the samples hold up to the efficiency test? What percentages of the samples pass or fail the test? What would be the likelihood of having the following specific number of efficiency test failures in the next 300 processors tested? 1 failures, 5 failures, 10 failures and 20 failures.arrow_forwardThe battery temperatures are a major concern for us. Can you analyze and describe the sample data? What are the average and median temperatures? How much variability is there in the temperatures? Is there anything that stands out? Our engineers’ assumption is that the temperature data is normally distributed. If that is the case, what would be the likelihood that the Safety Zone temperature will exceed 5.15 degrees? What is the probability that the Safety Zone temperature will be less than 4.65 degrees? What is the actual percentage of samples that exceed 5.25 degrees or are less than 4.75 degrees? Is the manufacturing process producing units with stable Safety Zone temperatures? Can you check if there are any apparent changes in the temperature pattern? Are there any outliers? A closer look at the Z-scores should help you in this regard.arrow_forwardNeed help pleasearrow_forward
- Please conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 4. One-Way ANOVA: Analyze the customer satisfaction scores across four different product categories to determine if there is a significant difference in means. (Hints: The null can be about maintaining status-quo or no difference among groups) H0 = H1=arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points 2. Two-Sample T-Test: Compare the average sales revenue of two different regions to determine if there is a significant difference. (Hints: The null can be about maintaining status-quo or no difference among groups; if alternative hypothesis is non-directional use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting null) H0 = H1=arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points 3. Paired T-Test: A company implemented a training program to improve employee performance. To evaluate the effectiveness of the program, the company recorded the test scores of 25 employees before and after the training. Determine if the training program is effective in terms of scores of participants before and after the training. (Hints: The null can be about maintaining status-quo or no difference among groups; if alternative hypothesis is non-directional, use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting the null) H0 = H1= Conclusion:arrow_forward
- Please conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. The data for the following questions is provided in Microsoft Excel file on 4 separate sheets. Please conduct these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to…arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to make a decision about rejecting or not rejecting null. If alternative is directional (e.g., μ < 75), you should use the lower-tailed p-value. For alternative hypothesis μ > 75, you should use the upper-tailed p-value.) H0 = H1= Conclusion: The p value from one sample t-test is _______. Since the two-tailed p-value is _______ 2. Two-Sample T-Test:…arrow_forwardPlease conduct a step by step of these statistical tests on separate sheets of Microsoft Excel. If the calculations in Microsoft Excel are incorrect, the null and alternative hypotheses, as well as the conclusions drawn from them, will be meaningless and will not receive any points. What is one sample T-test? Give an example of business application of this test? What is Two-Sample T-Test. Give an example of business application of this test? .What is paired T-test. Give an example of business application of this test? What is one way ANOVA test. Give an example of business application of this test? 1. One Sample T-Test: Determine whether the average satisfaction rating of customers for a product is significantly different from a hypothetical mean of 75. (Hints: The null can be about maintaining status-quo or no difference; If your alternative hypothesis is non-directional (e.g., μ≠75), you should use the two-tailed p-value from excel file to make a decision about rejecting or not…arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





