WEBASSIGN F/EPPS DISCRETE MATHEMATICS
5th Edition
ISBN: 9780357540244
Author: EPP
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.1, Problem 22ES
To determine
Use the unique factonzation for the integers theorem and the definition of logarithm to prove that.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
13. A pharmaceutical company has developed a new drug for
depression. There is a concern, however, that the drug also
raises the blood pressure of its users. A researcher wants to
conduct a test to validate this claim. Would the manager of the
pharmaceutical company be more concerned about a Type I
error or a Type II error? Explain.
Find the z score that corresponds to the given area 30% below z.
Find the following probability P(z<-.24)
Chapter 7 Solutions
WEBASSIGN F/EPPS DISCRETE MATHEMATICS
Ch. 7.1 - Given a function f from a set X to a set Y, f(x)...Ch. 7.1 - Given a function f from a set X to a set Y, if...Ch. 7.1 - Prob. 3TYCh. 7.1 - Given a function f then a set X to a set Y, if...Ch. 7.1 - Prob. 5TYCh. 7.1 - Prob. 6TYCh. 7.1 - Prob. 7TYCh. 7.1 - Prob. 8TYCh. 7.1 - Prob. 9TYCh. 7.1 - Prob. 1ES
Ch. 7.1 - Let X={1,3,5} and Y={a,b,c,d}. Define g:XY by the...Ch. 7.1 - Indicate whether the statement in parts (a)-(d)...Ch. 7.1 - a. Find all function from X={a,b}toY={u,v} . b....Ch. 7.1 - Let Iz be the identity function defined on the set...Ch. 7.1 - Find function defined on the sdet of nonnegative...Ch. 7.1 - Let A={1,2,3,4,5} , and define a function F:P(A)Z...Ch. 7.1 - Let Js={0,1,2,3,4} , and define a function F:JsJs...Ch. 7.1 - Define a function S:Z+Z+ as follows: For each...Ch. 7.1 - Prob. 10ESCh. 7.1 - Define F:ZZZZ as follows: For every ordered pair...Ch. 7.1 - Let JS={0,1,2,3,4} ,and define G:JsJsJsJs as...Ch. 7.1 - Let Js={0,1,2,3,4} , and define functions f:JsJs...Ch. 7.1 - Define functions H and K from R to R by the...Ch. 7.1 - Prob. 15ESCh. 7.1 - Let F and G be functions from the set of all real...Ch. 7.1 - Prob. 17ESCh. 7.1 - Find exact values for each of the following...Ch. 7.1 - Prob. 19ESCh. 7.1 - Prob. 20ESCh. 7.1 - If b is any positive real number with b1 and x is...Ch. 7.1 - Prob. 22ESCh. 7.1 - Prob. 23ESCh. 7.1 - If b and y are positivereal numbers such that...Ch. 7.1 - Let A={2,3,5} and B={x,y}. Let p1 and p2 be the...Ch. 7.1 - Observe that mod and div can be defined as...Ch. 7.1 - Let S be the set of all strings of as and bs....Ch. 7.1 - Consider the coding and decoding functions E and D...Ch. 7.1 - Consider the Hamming distance function defined in...Ch. 7.1 - Draw arrow diagram for the Boolean functions...Ch. 7.1 - Fill in the following table to show the values of...Ch. 7.1 - Cosider the three-place Boolean function f defined...Ch. 7.1 - Student A tries to define a function g:QZ by the...Ch. 7.1 - Student C tries to define a function h:QQ by the...Ch. 7.1 - Let U={1,2,3,4} . Student A tries to define a...Ch. 7.1 - Prob. 36ESCh. 7.1 - On certain computers the integer data type goed...Ch. 7.1 - Prob. 38ESCh. 7.1 - Prob. 39ESCh. 7.1 - Prob. 40ESCh. 7.1 - Prob. 41ESCh. 7.1 - In 41-49 let X and Y be sets, let A and B be any...Ch. 7.1 - Prob. 43ESCh. 7.1 - Prob. 44ESCh. 7.1 - Prob. 45ESCh. 7.1 - Prob. 46ESCh. 7.1 - Prob. 47ESCh. 7.1 - Prob. 48ESCh. 7.1 - Prob. 49ESCh. 7.1 - Prob. 50ESCh. 7.1 - Each of exercises 51-53 refers to the Euler phi...Ch. 7.1 - Prob. 52ESCh. 7.1 - Each of exercises 51-53 refers to the Euler phi...Ch. 7.2 - If F is a function from a set X to a set Y, then F...Ch. 7.2 - If F is a function from a set X to a set Y, then F...Ch. 7.2 - Prob. 3TYCh. 7.2 - Prob. 4TYCh. 7.2 - Prob. 5TYCh. 7.2 - Prob. 6TYCh. 7.2 - Prob. 7TYCh. 7.2 - Given a function F:XY , to prove that F is not one...Ch. 7.2 - Prob. 9TYCh. 7.2 - Prob. 10TYCh. 7.2 - Prob. 11TYCh. 7.2 - The definition of onr-to-one is stated in two...Ch. 7.2 - Fill in each blank with the word most or least. a....Ch. 7.2 - When asked to state the definition of one-to-one,...Ch. 7.2 - Let f:XY be a function. True or false? A...Ch. 7.2 - All but two of the following statements are...Ch. 7.2 - Let X={1,5,9} and Y={3,4,7} . a. Define f:XY by...Ch. 7.2 - Let X={a,b,c,d} and Y={e,f,g} . Define functions F...Ch. 7.2 - Let X={a,b,c} and Y={d,e,f,g} . Define functions H...Ch. 7.2 - Let X={1,2,3},Y={1,2,3,4} , and Z= {1,2} Define a...Ch. 7.2 - a. Define f:ZZ by the rule f(n)=2n, for every...Ch. 7.2 - Define F:ZZZZ as follows. For every ordered pair...Ch. 7.2 - a. Define F:ZZ by the rule F(n)=23n for each...Ch. 7.2 - a. Define H:RR by the rule H(x)=x2 , for each real...Ch. 7.2 - Explain the mistake in the following “proof.”...Ch. 7.2 - In each of 15-18 a function f is defined on a set...Ch. 7.2 - Prob. 16ESCh. 7.2 - Prob. 17ESCh. 7.2 - Prob. 18ESCh. 7.2 - Referring to Example 7.2.3, assume that records...Ch. 7.2 - Define Floor: RZ by the formula Floor (x)=x , for...Ch. 7.2 - Prob. 21ESCh. 7.2 - Let S be the set of all strings of 0’s and 1’s,...Ch. 7.2 - Define F:P({a,b,c})Z as follaws: For every A in...Ch. 7.2 - Les S be the set of all strings of a’s and b’s,...Ch. 7.2 - Let S be the et of all strings is a’s and b’s, and...Ch. 7.2 - Prob. 26ESCh. 7.2 - Let D be the set of all set of all finite subsets...Ch. 7.2 - Prob. 28ESCh. 7.2 - Define H:RRRR as follows: H(x,y)=(x+1,2y) for...Ch. 7.2 - Define J=QQR by the rule J(r,s)=r+2s for each...Ch. 7.2 - Prob. 31ESCh. 7.2 - a. Is log827=log23? Why or why not? b. Is...Ch. 7.2 - Prob. 33ESCh. 7.2 - The properties of logarithm established in 33-35...Ch. 7.2 - Prob. 35ESCh. 7.2 - Prob. 36ESCh. 7.2 - Prob. 37ESCh. 7.2 - Prob. 38ESCh. 7.2 - Prob. 39ESCh. 7.2 - Suppose F:XY is one—to—one. a. Prove that for...Ch. 7.2 - Suppose F:XY is into. Prove that for every subset...Ch. 7.2 - Prob. 42ESCh. 7.2 - Prob. 43ESCh. 7.2 - In 44-55 indicate which of the function in the...Ch. 7.2 - In 44-55 indicate which of the function in the...Ch. 7.2 - Prob. 46ESCh. 7.2 - Prob. 47ESCh. 7.2 - Prob. 48ESCh. 7.2 - Prob. 49ESCh. 7.2 - Prob. 50ESCh. 7.2 - Prob. 51ESCh. 7.2 - Prob. 52ESCh. 7.2 - Prob. 53ESCh. 7.2 - Prob. 54ESCh. 7.2 - Prob. 55ESCh. 7.2 - Prob. 56ESCh. 7.2 - Write a computer algorithm to check whether a...Ch. 7.2 - Write a computer algorithm to check whether a...Ch. 7.3 - If f is a function from X to Y’,g is a function...Ch. 7.3 - Prob. 2TYCh. 7.3 - If f is a one-to=-one correspondence from X to Y....Ch. 7.3 - Prob. 4TYCh. 7.3 - Prob. 5TYCh. 7.3 - Prob. 1ESCh. 7.3 - In each of 1 and 2, functions f and g are defined...Ch. 7.3 - In 3 and 4, functions F and G are defined by...Ch. 7.3 - In 3 and 4, functions F and G are defined by...Ch. 7.3 - Define f:RR by the rule f(x)=x for every real...Ch. 7.3 - Define F:ZZ and G:ZZ . By the rules F(a)=7a and...Ch. 7.3 - Define L:ZZ and M:ZZ by the rules L(a)=a2 and...Ch. 7.3 - Let S be the set of all strings in a’s and b’s and...Ch. 7.3 - Define F:RR and G:RZ by the following formulas:...Ch. 7.3 - Prob. 10ESCh. 7.3 - Define F:RR and G:RR by the rules F(n)=3x and...Ch. 7.3 - The functions of each pair in 12—14 are inverse to...Ch. 7.3 - G:R+R+ and G1:RR+ are defined by G(x)=x2andG1(x)=x...Ch. 7.3 - H and H-1 are both defined from R={1} to R-{1} by...Ch. 7.3 - Explain how it follows from the definition of...Ch. 7.3 - Prove Theorem 7.3.1(b): If f is any function from...Ch. 7.3 - Prove Theorem 7.3.2(b): If f:XY is a one-to-one...Ch. 7.3 - Prob. 18ESCh. 7.3 - If + f:XY and g:YZ are functions and gf is...Ch. 7.3 - If f:XY and g:YZ are function and gf is onto, must...Ch. 7.3 - Prob. 21ESCh. 7.3 - If f:XY and g:YZ are functions and gf is onto,...Ch. 7.3 - Prob. 23ESCh. 7.3 - Prob. 24ESCh. 7.3 - Prob. 25ESCh. 7.3 - In 26 and 27 find (gf)1,g1,f1, and f1g1 , and...Ch. 7.3 - In 26 and 27 find (gf)1,g1,f1 , and f1g1 by the...Ch. 7.3 - Prob. 28ESCh. 7.3 - Suppose f:XY and g:YZ are both one-to-one and...Ch. 7.3 - Prob. 30ESCh. 7.4 - A set is finite if, and only if,________Ch. 7.4 - Prob. 2TYCh. 7.4 - The reflexive property of cardinality says that...Ch. 7.4 - The symmetric property of cardinality says that...Ch. 7.4 - The transitive property of cardinality say that...Ch. 7.4 - Prob. 6TYCh. 7.4 - Prob. 7TYCh. 7.4 - Prob. 8TYCh. 7.4 - Prob. 9TYCh. 7.4 - Prob. 1ESCh. 7.4 - Show that “there are as many squares as there are...Ch. 7.4 - Let 3Z={nZn=3k,forsomeintegerk} . Prove that Z and...Ch. 7.4 - Let O be the set of all odd integers. Prove that O...Ch. 7.4 - Let 25Z be the set of all integers that are...Ch. 7.4 - Prob. 6ESCh. 7.4 - Prob. 7ESCh. 7.4 - Use the result of exercise 3 to prove that 3Z is...Ch. 7.4 - Show that the set of all nonnegative integers is...Ch. 7.4 - In 10-14 s denotes the sets of real numbers...Ch. 7.4 - Prob. 11ESCh. 7.4 - In 10-14 S denotes the set of real numbers...Ch. 7.4 - Prob. 13ESCh. 7.4 - Prob. 14ESCh. 7.4 - Show that the set of all bit string (string of 0’s...Ch. 7.4 - Prob. 16ESCh. 7.4 - Prob. 17ESCh. 7.4 - Must the average of two irrational numbers always...Ch. 7.4 - Prob. 19ESCh. 7.4 - Give two examples of functions from Z to Z that...Ch. 7.4 - Give two examples of function from Z to Z that are...Ch. 7.4 - Define a function g:Z+Z+Z+ by the formula...Ch. 7.4 - âa. Explain how to use the following diagram to...Ch. 7.4 - Prob. 24ESCh. 7.4 - Prob. 25ESCh. 7.4 - Prove that any infinite set contain a countable...Ch. 7.4 - Prove that if A is any countably infinite set, B...Ch. 7.4 - Prove that a disjoint union of any finite set and...Ch. 7.4 - Prove that a union of any two countably infinite...Ch. 7.4 - Prob. 30ESCh. 7.4 - Use the results of exercise 28 and 29 to prove...Ch. 7.4 - Prove that ZZ , the Cartesian product of the set...Ch. 7.4 - Prob. 33ESCh. 7.4 - Let P(s) be the set of all subsets of set S, and...Ch. 7.4 - Prob. 35ESCh. 7.4 - Prob. 36ESCh. 7.4 - Prove that if A and B are any countably infinite...Ch. 7.4 - Prob. 38ES
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Exercises Evaluate the following limits. 1. lim cot x/ln x +01x 2. lim x² In x +014 3. lim x* x0+ 4. lim (cos√√x)1/x +014 5. lim x2/(1-cos x) x10 6. lim e*/* 818 7. lim (secx - tan x) x-x/2- 8. lim [1+(3/x)]* x→∞0arrow_forwardIn Exercises 1 through 3, let xo = O and calculate P7(x) and R7(x). 1. f(x)=sin x, x in R. 2. f(x) = cos x, x in R. 3. f(x) = In(1+x), x≥0. 4. In Exercises 1, 2, and 3, for |x| 1, calculate a value of n such that P(x) approximates f(x) to within 10-6. 5. Let (an)neN be a sequence of positive real numbers such that L = lim (an+1/an) exists in R. If L < 1, show that an → 0. [Hint: Let 1111 Larrow_forwardiation 7. Let f be continuous on [a, b] and differentiable on (a, b). If lim f'(x) xia exists in R, show that f is differentiable at a and f'(a) = lim f'(x). A similar result holds for b. x-a 8. In reference to Corollary 5.4, give an example of a uniformly continuous function on [0, 1] that is differentiable on (0, 1] but whose derivative is not bounded there. 9. Recall that a fixed point of a function f is a point c such that f(c) = c. (a) Show that if f is differentiable on R and f'(x)| x if x 1 and hence In(1+x) 0. 12. For 0 л/2. (Thus, as x л/2 from the left, cos x is never large enough for x+cosx to be greater than л/2 and cot x is never small enough for x + cot x to be less than x/2.)arrow_forwardConstruct a histogram for the spot weld shear strength datain Exercise 6.2.9. Comment on the shape of the histogram. Doesit convey the same information as the stem-and-leaf display? Reference: Exercise 6.2.9 is found in the image attached belowarrow_forward1. Show that f(x) = x3 is not uniformly continuous on R. 2. Show that f(x) = 1/(x-2) is not uniformly continuous on (2,00). 3. Show that f(x)=sin(1/x) is not uniformly continuous on (0,л/2]. 4. Show that f(x) = mx + b is uniformly continuous on R. 5. Show that f(x) = 1/x2 is uniformly continuous on [1, 00), but not on (0, 1]. 6. Show that if f is uniformly continuous on [a, b] and uniformly continuous on D (where D is either [b, c] or [b, 00)), then f is uniformly continuous on [a, b]U D. 7. Show that f(x)=√x is uniformly continuous on [1, 00). Use Exercise 6 to conclude that f is uniformly continuous on [0, ∞). 8. Show that if D is bounded and f is uniformly continuous on D, then fis bounded on D. 9. Let f and g be uniformly continuous on D. Show that f+g is uniformly continuous on D. Show, by example, that fg need not be uniformly con- tinuous on D. 10. Complete the proof of Theorem 4.7. 11. Give an example of a continuous function on Q that cannot be continuously extended to R. 12.…arrow_forward3. Explain why the following statements are not correct. a. "With my methodological approach, I can reduce the Type I error with the given sample information without changing the Type II error." b. "I have already decided how much of the Type I error I am going to allow. A bigger sample will not change either the Type I or Type II error." C. "I can reduce the Type II error by making it difficult to reject the null hypothesis." d. "By making it easy to reject the null hypothesis, I am reducing the Type I error."arrow_forwardThe 2004 presidential election exit polls from the critical state of Ohio provided the following results. The exit polls had 2020 respondents, 768 of whom were college graduates. Ofthe college graduates, 412 voted for George Bush.a. Calculate a 95% confidence interval for the proportion ofcollege graduates in Ohio who voted for George Bush.b. Calculate a 95% lower confidence bound for the proportion of college graduates in Ohio who voted for George Bush.arrow_forward1. The yield of a chemical process is being studied. From previous experience, yield is known to be normally distributed and σ = 3. The past 5 days of plant operation have resulted in the following percent yields: 91.6, 88.75, 90.8, 89.95, and 91.3. Find a 95% two-sided confidence interval on the true mean yield. 2. A research engineer for a tire manufacturer is investigating tire life for a new rubber compound and has built 16 tires and tested them to end-of-life in a road test. The sample mean and standard deviation are 60,139.7 and 3645.94 kilometers. Find a 95% confidence interval on mean tire lifearrow_forwardThe following two questions appear on an employee survey questionnaire. Each answer is chosen from the five-point scale 1 (never), 2, 3, 4, 5 (always).Is the corporation willing to listen to and fairly evaluatenew ideas?How often are my coworkers important in my overall jobperformance?arrow_forwardCloud seeding, a process in which chemicals such as silver iodide and frozen carbon dioxide are introduced by aircraft into clouds to promote rainfall, was widely used in the 20th century. Recent research has questioned its effectiveness [“Reassessment of Rain Enhancement Experiments and Operations in Israel Including Synoptic Considerations,” Journal of Atmospheric Research (2010, Vol. 97(4), pp. 513–525)]. An experiment was performed by randomly assigning 52 clouds to be seeded or not. The amount of rain generated was then measured in acre-feet. Here are the data for the unseeded and seeded clouds: Unseeded: 81.2 26.1 95.0 41.1 28.6 21.7 11.5 68.5 345.5 321.2 1202.6 1.0 4.9 163.0 372.4 244.3 47.3 87.0 26.3 24.4 830.1 4.9 36.6 147.8 17.3 29.0 Seeded: 274.7 302.8 242.5 255.0 17.5 115.3 31.4 703.4 334.1 1697.8 118.3 198.6 129.6 274.7 119.0 1656.0 7.7 430.0 40.6 92.4 200.7 32.7 4.1 978.0 489.1 2745.6 Find the sample mean, sample standard deviation, and range of rainfall for a. All 52…arrow_forwardAnswer questions 7.2.7 and 7.3.5 respectivelyarrow_forward6.2.8 WP The female students in an undergraduate engineering core course at ASU self-reported their heights to the nearest inch. The data follow. Construct a stem-and-leaf diagram for the height data and comment on any important features that you notice. Cal- culate the sample mean, the sample standard deviation, and the sample median of height. 62 64 61 67 65 68 61 65 60 65 64 63 59 68 64 66 68 69 65 67 62 66 68 67 66 65 69 65 69 65 67 67 65 63 64 67 65arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Algebraic Complexity with Less Relations; Author: The University of Chicago;https://www.youtube.com/watch?v=ZOKM1JPz650;License: Standard Youtube License
Strassen's Matrix Multiplication - Divide and Conquer - Analysis of Algorithm; Author: Ekeeda;https://www.youtube.com/watch?v=UnpySHwAJsQ;License: Standard YouTube License, CC-BY
Trigonometric Equations with Complex Numbers | Complex Analysis #6; Author: TheMathCoach;https://www.youtube.com/watch?v=zdD8Dab1T2Y;License: Standard YouTube License, CC-BY