DISCRETE MATHEMATICS WITH APPLICATION (
5th Edition
ISBN: 9780357097717
Author: EPP
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.1, Problem 1ES
To determine
(a)
Write the domain of
To determine
(b)
Find
To determine
(c)
What is the range of
To determine
(d)
Is
To determine
(e)
What is the inverse image of
To determine
(f)
Represent
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Can you answer this question and give step by step and why and how to get it. Can you write it (numerical method)
Jamal wants to save $48,000 for a down payment on a home. How much will he need to invest in an
account with 11.8% APR, compounding daily, in order to reach his goal in 10 years? Round to the
nearest dollar.
r
nt
Use the compound interest formula, A (t) = P(1 + 1)".
An account is opened with an intial deposit of $7,500 and earns 3.8% interest compounded semi-
annually. Round all answers to the nearest dollar.
a. What will the account be worth in 10 years? $
b. What if the interest were compounding monthly? $
c. What if the interest were compounded daily (assume 365 days in a year)? $
Chapter 7 Solutions
DISCRETE MATHEMATICS WITH APPLICATION (
Ch. 7.1 - Given a function f from a set X to a set Y, f(x)...Ch. 7.1 - Given a function f from a set X to a set Y, if...Ch. 7.1 - Prob. 3TYCh. 7.1 - Given a function f then a set X to a set Y, if...Ch. 7.1 - Prob. 5TYCh. 7.1 - Prob. 6TYCh. 7.1 - Prob. 7TYCh. 7.1 - Prob. 8TYCh. 7.1 - Prob. 9TYCh. 7.1 - Prob. 1ES
Ch. 7.1 - Let X={1,3,5} and Y={a,b,c,d}. Define g:XY by the...Ch. 7.1 - Indicate whether the statement in parts (a)-(d)...Ch. 7.1 - a. Find all function from X={a,b}toY={u,v} . b....Ch. 7.1 - Let Iz be the identity function defined on the set...Ch. 7.1 - Find function defined on the sdet of nonnegative...Ch. 7.1 - Let A={1,2,3,4,5} , and define a function F:P(A)Z...Ch. 7.1 - Let Js={0,1,2,3,4} , and define a function F:JsJs...Ch. 7.1 - Define a function S:Z+Z+ as follows: For each...Ch. 7.1 - Prob. 10ESCh. 7.1 - Define F:ZZZZ as follows: For every ordered pair...Ch. 7.1 - Let JS={0,1,2,3,4} ,and define G:JsJsJsJs as...Ch. 7.1 - Let Js={0,1,2,3,4} , and define functions f:JsJs...Ch. 7.1 - Define functions H and K from R to R by the...Ch. 7.1 - Prob. 15ESCh. 7.1 - Let F and G be functions from the set of all real...Ch. 7.1 - Prob. 17ESCh. 7.1 - Find exact values for each of the following...Ch. 7.1 - Prob. 19ESCh. 7.1 - Prob. 20ESCh. 7.1 - If b is any positive real number with b1 and x is...Ch. 7.1 - Prob. 22ESCh. 7.1 - Prob. 23ESCh. 7.1 - If b and y are positivereal numbers such that...Ch. 7.1 - Let A={2,3,5} and B={x,y}. Let p1 and p2 be the...Ch. 7.1 - Observe that mod and div can be defined as...Ch. 7.1 - Let S be the set of all strings of as and bs....Ch. 7.1 - Consider the coding and decoding functions E and D...Ch. 7.1 - Consider the Hamming distance function defined in...Ch. 7.1 - Draw arrow diagram for the Boolean functions...Ch. 7.1 - Fill in the following table to show the values of...Ch. 7.1 - Cosider the three-place Boolean function f defined...Ch. 7.1 - Student A tries to define a function g:QZ by the...Ch. 7.1 - Student C tries to define a function h:QQ by the...Ch. 7.1 - Let U={1,2,3,4} . Student A tries to define a...Ch. 7.1 - Prob. 36ESCh. 7.1 - On certain computers the integer data type goed...Ch. 7.1 - Prob. 38ESCh. 7.1 - Prob. 39ESCh. 7.1 - Prob. 40ESCh. 7.1 - Prob. 41ESCh. 7.1 - In 41-49 let X and Y be sets, let A and B be any...Ch. 7.1 - Prob. 43ESCh. 7.1 - Prob. 44ESCh. 7.1 - Prob. 45ESCh. 7.1 - Prob. 46ESCh. 7.1 - Prob. 47ESCh. 7.1 - Prob. 48ESCh. 7.1 - Prob. 49ESCh. 7.1 - Prob. 50ESCh. 7.1 - Each of exercises 51-53 refers to the Euler phi...Ch. 7.1 - Prob. 52ESCh. 7.1 - Each of exercises 51-53 refers to the Euler phi...Ch. 7.2 - If F is a function from a set X to a set Y, then F...Ch. 7.2 - If F is a function from a set X to a set Y, then F...Ch. 7.2 - Prob. 3TYCh. 7.2 - Prob. 4TYCh. 7.2 - Prob. 5TYCh. 7.2 - Prob. 6TYCh. 7.2 - Prob. 7TYCh. 7.2 - Given a function F:XY , to prove that F is not one...Ch. 7.2 - Prob. 9TYCh. 7.2 - Prob. 10TYCh. 7.2 - Prob. 11TYCh. 7.2 - The definition of onr-to-one is stated in two...Ch. 7.2 - Fill in each blank with the word most or least. a....Ch. 7.2 - When asked to state the definition of one-to-one,...Ch. 7.2 - Let f:XY be a function. True or false? A...Ch. 7.2 - All but two of the following statements are...Ch. 7.2 - Let X={1,5,9} and Y={3,4,7} . a. Define f:XY by...Ch. 7.2 - Let X={a,b,c,d} and Y={e,f,g} . Define functions F...Ch. 7.2 - Let X={a,b,c} and Y={d,e,f,g} . Define functions H...Ch. 7.2 - Let X={1,2,3},Y={1,2,3,4} , and Z= {1,2} Define a...Ch. 7.2 - a. Define f:ZZ by the rule f(n)=2n, for every...Ch. 7.2 - Define F:ZZZZ as follows. For every ordered pair...Ch. 7.2 - a. Define F:ZZ by the rule F(n)=23n for each...Ch. 7.2 - a. Define H:RR by the rule H(x)=x2 , for each real...Ch. 7.2 - Explain the mistake in the following “proof.”...Ch. 7.2 - In each of 15-18 a function f is defined on a set...Ch. 7.2 - Prob. 16ESCh. 7.2 - Prob. 17ESCh. 7.2 - Prob. 18ESCh. 7.2 - Referring to Example 7.2.3, assume that records...Ch. 7.2 - Define Floor: RZ by the formula Floor (x)=x , for...Ch. 7.2 - Prob. 21ESCh. 7.2 - Let S be the set of all strings of 0’s and 1’s,...Ch. 7.2 - Define F:P({a,b,c})Z as follaws: For every A in...Ch. 7.2 - Les S be the set of all strings of a’s and b’s,...Ch. 7.2 - Let S be the et of all strings is a’s and b’s, and...Ch. 7.2 - Prob. 26ESCh. 7.2 - Let D be the set of all set of all finite subsets...Ch. 7.2 - Prob. 28ESCh. 7.2 - Define H:RRRR as follows: H(x,y)=(x+1,2y) for...Ch. 7.2 - Define J=QQR by the rule J(r,s)=r+2s for each...Ch. 7.2 - Prob. 31ESCh. 7.2 - a. Is log827=log23? Why or why not? b. Is...Ch. 7.2 - Prob. 33ESCh. 7.2 - The properties of logarithm established in 33-35...Ch. 7.2 - Prob. 35ESCh. 7.2 - Prob. 36ESCh. 7.2 - Prob. 37ESCh. 7.2 - Prob. 38ESCh. 7.2 - Prob. 39ESCh. 7.2 - Suppose F:XY is one—to—one. a. Prove that for...Ch. 7.2 - Suppose F:XY is into. Prove that for every subset...Ch. 7.2 - Prob. 42ESCh. 7.2 - Prob. 43ESCh. 7.2 - In 44-55 indicate which of the function in the...Ch. 7.2 - In 44-55 indicate which of the function in the...Ch. 7.2 - Prob. 46ESCh. 7.2 - Prob. 47ESCh. 7.2 - Prob. 48ESCh. 7.2 - Prob. 49ESCh. 7.2 - Prob. 50ESCh. 7.2 - Prob. 51ESCh. 7.2 - Prob. 52ESCh. 7.2 - Prob. 53ESCh. 7.2 - Prob. 54ESCh. 7.2 - Prob. 55ESCh. 7.2 - Prob. 56ESCh. 7.2 - Write a computer algorithm to check whether a...Ch. 7.2 - Write a computer algorithm to check whether a...Ch. 7.3 - If f is a function from X to Y’,g is a function...Ch. 7.3 - Prob. 2TYCh. 7.3 - If f is a one-to=-one correspondence from X to Y....Ch. 7.3 - Prob. 4TYCh. 7.3 - Prob. 5TYCh. 7.3 - Prob. 1ESCh. 7.3 - In each of 1 and 2, functions f and g are defined...Ch. 7.3 - In 3 and 4, functions F and G are defined by...Ch. 7.3 - In 3 and 4, functions F and G are defined by...Ch. 7.3 - Define f:RR by the rule f(x)=x for every real...Ch. 7.3 - Define F:ZZ and G:ZZ . By the rules F(a)=7a and...Ch. 7.3 - Define L:ZZ and M:ZZ by the rules L(a)=a2 and...Ch. 7.3 - Let S be the set of all strings in a’s and b’s and...Ch. 7.3 - Define F:RR and G:RZ by the following formulas:...Ch. 7.3 - Prob. 10ESCh. 7.3 - Define F:RR and G:RR by the rules F(n)=3x and...Ch. 7.3 - The functions of each pair in 12—14 are inverse to...Ch. 7.3 - G:R+R+ and G1:RR+ are defined by G(x)=x2andG1(x)=x...Ch. 7.3 - H and H-1 are both defined from R={1} to R-{1} by...Ch. 7.3 - Explain how it follows from the definition of...Ch. 7.3 - Prove Theorem 7.3.1(b): If f is any function from...Ch. 7.3 - Prove Theorem 7.3.2(b): If f:XY is a one-to-one...Ch. 7.3 - Prob. 18ESCh. 7.3 - If + f:XY and g:YZ are functions and gf is...Ch. 7.3 - If f:XY and g:YZ are function and gf is onto, must...Ch. 7.3 - Prob. 21ESCh. 7.3 - If f:XY and g:YZ are functions and gf is onto,...Ch. 7.3 - Prob. 23ESCh. 7.3 - Prob. 24ESCh. 7.3 - Prob. 25ESCh. 7.3 - In 26 and 27 find (gf)1,g1,f1, and f1g1 , and...Ch. 7.3 - In 26 and 27 find (gf)1,g1,f1 , and f1g1 by the...Ch. 7.3 - Prob. 28ESCh. 7.3 - Suppose f:XY and g:YZ are both one-to-one and...Ch. 7.3 - Prob. 30ESCh. 7.4 - A set is finite if, and only if,________Ch. 7.4 - Prob. 2TYCh. 7.4 - The reflexive property of cardinality says that...Ch. 7.4 - The symmetric property of cardinality says that...Ch. 7.4 - The transitive property of cardinality say that...Ch. 7.4 - Prob. 6TYCh. 7.4 - Prob. 7TYCh. 7.4 - Prob. 8TYCh. 7.4 - Prob. 9TYCh. 7.4 - Prob. 1ESCh. 7.4 - Show that “there are as many squares as there are...Ch. 7.4 - Let 3Z={nZn=3k,forsomeintegerk} . Prove that Z and...Ch. 7.4 - Let O be the set of all odd integers. Prove that O...Ch. 7.4 - Let 25Z be the set of all integers that are...Ch. 7.4 - Prob. 6ESCh. 7.4 - Prob. 7ESCh. 7.4 - Use the result of exercise 3 to prove that 3Z is...Ch. 7.4 - Show that the set of all nonnegative integers is...Ch. 7.4 - In 10-14 s denotes the sets of real numbers...Ch. 7.4 - Prob. 11ESCh. 7.4 - In 10-14 S denotes the set of real numbers...Ch. 7.4 - Prob. 13ESCh. 7.4 - Prob. 14ESCh. 7.4 - Show that the set of all bit string (string of 0’s...Ch. 7.4 - Prob. 16ESCh. 7.4 - Prob. 17ESCh. 7.4 - Must the average of two irrational numbers always...Ch. 7.4 - Prob. 19ESCh. 7.4 - Give two examples of functions from Z to Z that...Ch. 7.4 - Give two examples of function from Z to Z that are...Ch. 7.4 - Define a function g:Z+Z+Z+ by the formula...Ch. 7.4 - âa. Explain how to use the following diagram to...Ch. 7.4 - Prob. 24ESCh. 7.4 - Prob. 25ESCh. 7.4 - Prove that any infinite set contain a countable...Ch. 7.4 - Prove that if A is any countably infinite set, B...Ch. 7.4 - Prove that a disjoint union of any finite set and...Ch. 7.4 - Prove that a union of any two countably infinite...Ch. 7.4 - Prob. 30ESCh. 7.4 - Use the results of exercise 28 and 29 to prove...Ch. 7.4 - Prove that ZZ , the Cartesian product of the set...Ch. 7.4 - Prob. 33ESCh. 7.4 - Let P(s) be the set of all subsets of set S, and...Ch. 7.4 - Prob. 35ESCh. 7.4 - Prob. 36ESCh. 7.4 - Prove that if A and B are any countably infinite...Ch. 7.4 - Prob. 38ES
Knowledge Booster
Similar questions
- Kyoko has $10,000 that she wants to invest. Her bank has several accounts to choose from. Her goal is to have $15,000 by the time she finishes graduate school in 7 years. To the nearest hundredth of a percent, what should her minimum annual interest rate be in order to reach her goal assuming they compound daily? (Hint: solve the compound interest formula for the intrerest rate. Also, assume there are 365 days in a year) %arrow_forwardTest the claim that a student's pulse rate is different when taking a quiz than attending a regular class. The mean pulse rate difference is 2.7 with 10 students. Use a significance level of 0.005. Pulse rate difference(Quiz - Lecture) 2 -1 5 -8 1 20 15 -4 9 -12arrow_forwardThere are three options for investing $1150. The first earns 10% compounded annually, the second earns 10% compounded quarterly, and the third earns 10% compounded continuously. Find equations that model each investment growth and use a graphing utility to graph each model in the same viewing window over a 20-year period. Use the graph to determine which investment yields the highest return after 20 years. What are the differences in earnings among the three investment? STEP 1: The formula for compound interest is A = nt = P(1 + − − ) n², where n is the number of compoundings per year, t is the number of years, r is the interest rate, P is the principal, and A is the amount (balance) after t years. For continuous compounding, the formula reduces to A = Pert Find r and n for each model, and use these values to write A in terms of t for each case. Annual Model r=0.10 A = Y(t) = 1150 (1.10)* n = 1 Quarterly Model r = 0.10 n = 4 A = Q(t) = 1150(1.025) 4t Continuous Model r=0.10 A = C(t) =…arrow_forward
- The following ordered data list shows the data speeds for cell phones used by a telephone company at an airport: A. Calculate the Measures of Central Tendency from the ungrouped data list. B. Group the data in an appropriate frequency table. C. Calculate the Measures of Central Tendency using the table in point B. D. Are there differences in the measurements obtained in A and C? Why (give at least one justified reason)? I leave the answers to A and B to resolve the remaining two. 0.8 1.4 1.8 1.9 3.2 3.6 4.5 4.5 4.6 6.2 6.5 7.7 7.9 9.9 10.2 10.3 10.9 11.1 11.1 11.6 11.8 12.0 13.1 13.5 13.7 14.1 14.2 14.7 15.0 15.1 15.5 15.8 16.0 17.5 18.2 20.2 21.1 21.5 22.2 22.4 23.1 24.5 25.7 28.5 34.6 38.5 43.0 55.6 71.3 77.8 A. Measures of Central Tendency We are to calculate: Mean, Median, Mode The data (already ordered) is: 0.8, 1.4, 1.8, 1.9, 3.2, 3.6, 4.5, 4.5, 4.6, 6.2, 6.5, 7.7, 7.9, 9.9, 10.2, 10.3, 10.9, 11.1, 11.1, 11.6, 11.8, 12.0, 13.1, 13.5, 13.7, 14.1, 14.2, 14.7, 15.0, 15.1, 15.5,…arrow_forwardA tournament is a complete directed graph, for each pair of vertices x, y either (x, y) is an arc or (y, x) is an arc. One can think of this as a round robin tournament, where the vertices represent teams, each pair plays exactly once, with the direction of the arc indicating which team wins. (a) Prove that every tournament has a direct Hamiltonian path. That is a labeling of the teams V1, V2,..., Un so that vi beats Vi+1. That is a labeling so that team 1 beats team 2, team 2 beats team 3, etc. (b) A digraph is strongly connected if there is a directed path from any vertex to any other vertex. Equivalently, there is no partition of the teams into groups A, B so that every team in A beats every team in B. Prove that every strongly connected tournament has a directed Hamiltonian cycle. Use this to show that for any team there is an ordering as in part (a) for which the given team is first. (c) A king in a tournament is a vertex such that there is a direct path of length at most 2 to any…arrow_forwardUse a graphing utility to find the point of intersection, if any, of the graphs of the functions. Round your result to three decimal places. (Enter NONE in any unused answer blanks.) y = 100e0.01x (x, y) = y = 11,250 ×arrow_forward
- how to construct the following same table?arrow_forwardThe following is known. The complete graph K2t on an even number of vertices has a 1- factorization (equivalently, its edges can be colored with 2t - 1 colors so that the edges incident to each vertex are distinct). This implies that the complete graph K2t+1 on an odd number of vertices has a factorization into copies of tK2 + K₁ (a matching plus an isolated vertex). A group of 10 people wants to set up a 45 week tennis schedule playing doubles, each week, the players will form 5 pairs. One of the pairs will not play, the other 4 pairs will each play one doubles match, two of the pairs playing each other and the other two pairs playing each other. Set up a schedule with the following constraints: Each pair of players is a doubles team exactly 4 times; during those 4 matches they see each other player exactly once; no two doubles teams play each other more than once. (a) Find a schedule. Hint - think about breaking the 45 weeks into 9 blocks of 5 weeks. Use factorizations of complete…arrow_forward. The two person game of slither is played on a graph. Players 1 and 2 take turns, building a path in the graph. To start, Player 1 picks a vertex. Player 2 then picks an edge incident to the vertex. Then, starting with Player 1, players alternate turns, picking a vertex not already selected that is adjacent to one of the ends of the path created so far. The first player who cannot select a vertex loses. (This happens when all neighbors of the end vertices of the path are on the path.) Prove that Player 2 has a winning strategy if the graph has a perfect matching and Player 1 has a winning strategy if the graph does not have a perfect matching. In each case describe a strategy for the winning player that guarantees that they will always be able to select a vertex. The strategy will be based on using a maximum matching to decide the next choice, and will, for one of the cases involve using the fact that maximality means no augmenting paths. Warning, the game slither is often described…arrow_forward
- Let D be a directed graph, with loops allowed, for which the indegree at each vertex is at most k and the outdegree at each vertex is at most k. Prove that the arcs of D can be colored so that the arcs entering each vertex must have distinct colors and the arcs leaving each vertex have distinct colors. An arc entering a vertex may have the same color as an arc leaving it. It is probably easiest to make use of a known result about edge coloring. Think about splitting each vertex into an ‘in’ and ‘out’ part and consider what type of graph you get.arrow_forward3:56 wust.instructure.com Page 0 Chapter 5 Test Form A of 2 - ZOOM + | Find any real numbers for which each expression is undefined. 2x 4 1. x Name: Date: 1. 3.x-5 2. 2. x²+x-12 4x-24 3. Evaluate when x=-3. 3. x Simplify each rational expression. x²-3x 4. 2x-6 5. x²+3x-18 x²-9 6. Write an equivalent rational expression with the given denominator. 2x-3 x²+2x+1(x+1)(x+2) Perform the indicated operation and simplify if possible. x²-16 x-3 7. 3x-9 x²+2x-8 x²+9x+20 5x+25 8. 4.x 2x² 9. x-5 x-5 3 5 10. 4x-3 8x-6 2 3 11. x-4 x+4 x 12. x-2x-8 x²-4 ← -> Copyright ©2020 Pearson Education, Inc. + 5 4. 5. 6. 7. 8. 9. 10. 11. 12. T-97arrow_forwardplease work out more details give the solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
- Glencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning

Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt

Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning