Physics for Scientists and Engineers with Modern Physics
4th Edition
ISBN: 9780131495081
Author: Douglas C. Giancoli
Publisher: Addison-Wesley
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 7.1, Problem 1BE
Return to the Chapter-Opening Question, page 163, and answer it again now. Try to explain why you may have answered differently the first time.
CHAPTER-OPENING QUESTION—Guess now!
You push very hard on a heavy desk, trying to move it. You do work on the desk:
- (a) Whether or not it moves, as long as you are exerting a force.
- (b) Only if it starts moving.
- (c) Only if it doesn’t move.
- (d) Never—it does work on you.
- (e) None of the above.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
kindly help.
Please answer all 3 subparts.
1. A robot begins pushing a 10kg box that was already moving at 0.5m/s [Right] along a surface with a coefficient of kinetic friction of 0.15. The robot pushes with only 30N [Right] of force.
a) What is the acceleration of the box?
b) Using the Work-Energy theorem, calculate how much work the robot does on the box accelerating it from 0.5m/s [Right] to 2m/s [Right].
c) What distance did the robot push the box? Use kinematics to check your work.
Please Answer part D only. questions A,B,C are just there as context should it be needed.
Chapter 7 Solutions
Physics for Scientists and Engineers with Modern Physics
Ch. 7.1 - A box is dragged a distance d across a floor by a...Ch. 7.1 - Return to the Chapter-Opening Question, page 163,...Ch. 7.4 - (a) Make a guess: will the work needed to...Ch. 7.4 - Can kinetic energy ever be negative?Ch. 7.4 - Prob. 1EECh. 7 - In what ways is the word work as used in everyday...Ch. 7 - A woman swimming upstream is not moving with...Ch. 7 - Can a centripetal force ever do work on an object?...Ch. 7 - Why is it tiring to push hard against a solid wall...Ch. 7 - Does the scalar product of two vectors depend on...
Ch. 7 - Can a dot product ever he negative? If yes, under...Ch. 7 - Prob. 7QCh. 7 - Does the dot product of two vectors have direction...Ch. 7 - Can the normal force on an object ever do work?...Ch. 7 - You have two springs that are identical except...Ch. 7 - Prob. 11QCh. 7 - In Example 710, it was stated that the block...Ch. 7 - Two bullets are fired at the same time with the...Ch. 7 - Does the net work done on a particle depend on the...Ch. 7 - A hand exerts a constant horizontal force on a...Ch. 7 - (I) How much work is done by the gravitational...Ch. 7 - (I) How high will a 1.85-kg rock go if thrown...Ch. 7 - (I) A 75.0-kg firefighter climbs a flight of...Ch. 7 - (I) A hammerhead with a mass of 2.0 kg is allowed...Ch. 7 - (II) Estimate the work you do to mow a lawn 10 m...Ch. 7 - (II) A lever such as that shown in Fig. 720 can be...Ch. 7 - (II) What is the minimum work needed to push a...Ch. 7 - (II) Eight books, each 4.0cm thick with mass 1.8...Ch. 7 - (II) A box of mass 6.0 kg is accelerated from rest...Ch. 7 - (II) (a) What magnitude force is required to give...Ch. 7 - (II) A 380-kg piano slides 3.9m down a 27 incline...Ch. 7 - (II) A gondola can carry 20 skiers, with a total...Ch. 7 - (II) A 17,000-kg jet takes off from an aircraft...Ch. 7 - (II) A 2200-N crate rests on the floor. How much...Ch. 7 - (II) A grocery cart with mass of 16 kg is being...Ch. 7 - (I) What is the dot product of...Ch. 7 - (I) For any vector V=Vxi+Vyj+Vzk show that...Ch. 7 - (I) Calculate the angle between the vectors:...Ch. 7 - Prob. 19PCh. 7 - (I) Vector V1 points along the z axis and has...Ch. 7 - (II) Given the vector A=3.0i+1.5j, find a vector...Ch. 7 - (II) A constant force F=(2.0i+4.0j)N acts on an...Ch. 7 - (II) If A=9.0i8.5j,B=8.0i+7.1j+4.2k,and...Ch. 7 - (II) Prove that AB=AxBx+AyBy+AzBz, starting from...Ch. 7 - (II) Given vectors A=4.8i+6.8jandB=9.6i+6.7j,...Ch. 7 - (II) Show that if two nonparallel vectors have the...Ch. 7 - (II) Let V=20.0i+22.0j14.0k. What angles does this...Ch. 7 - (II) Use the scalar product to prove the law of...Ch. 7 - (II) Vectors A and B are in the xy plane and their...Ch. 7 - (II) A and B are two vectors in the xy plane that...Ch. 7 - (II) Suppose A=1.0i+1.0j2.0k and B=1.0i+1.0j+2.0k,...Ch. 7 - (II) Find a vector of unit length in the xy plane...Ch. 7 - (III) Show that the scalar product of two vectors...Ch. 7 - (I) In pedaling a bicycle uphill, a cyclist exerts...Ch. 7 - (II) A spring has k = 65N/m. Draw a graph like...Ch. 7 - (II) If the hill in Example 72 (Fig. 74) was not...Ch. 7 - (II) The net force exerted on a particle acts in...Ch. 7 - (II) If it requires 5.0 J of work to stretch a...Ch. 7 - (II) In Fig. 79 assume the distance axis is the x...Ch. 7 - (II) The force on a particle, acting along the x...Ch. 7 - (II) A child is pulling a wagon down the sidewalk....Ch. 7 - (II) The resistance of a packing material to a...Ch. 7 - (II) The force needed to hold a particular spring...Ch. 7 - (II) At the top of a pole vault, and athlete...Ch. 7 - (II) Consider a force F1=A/xwhich acts on an...Ch. 7 - (II) Assume that a force acting on an object is...Ch. 7 - (II) An object, moving along the circumference of...Ch. 7 - (III) A 2800-kg space vehicle, initially at rest,...Ch. 7 - (III) A 3.0-m-long steel chain is stretched out...Ch. 7 - (I) At room temperature, an oxygen molecule, with...Ch. 7 - (I) (a) If the kinetic energy of a particle is...Ch. 7 - (I) How much work is required to stop an electron...Ch. 7 - (I) How much work must be done to stop a 1300-kg...Ch. 7 - (II) Spiderman uses his spider webs to save a...Ch. 7 - (II) A baseball (m=145g) traveling 32mA moves a...Ch. 7 - (II) An 85-g arrow is fired from a bow whose...Ch. 7 - (II) A mass m is attached to a spring which is...Ch. 7 - (II) If the speed of a car is increased by 50%, by...Ch. 7 - (II) A 1200-kg car rolling on a horizontal surface...Ch. 7 - (II) One car has twice the mass of a second car,...Ch. 7 - (II) A 4.5-kg object moving in two dimensions...Ch. 7 - (II) A 265-kg load is lifted 23.0m vertically with...Ch. 7 - (II) (a) How much work is done by the horizontal...Ch. 7 - (II) (a) How much work is done by the horizontal...Ch. 7 - (II) At an accident scene on a level road,...Ch. 7 - (II) A 46.0-kg crate, starting from rest, is...Ch. 7 - (II) A train is moving along a track with constant...Ch. 7 - (III) We usually neglect the mass of a spring if...Ch. 7 - (III) An elevator cable breaks when a 925-kg...Ch. 7 - (a) A 3.0-g locust reaches a speed of 3.0m/s...Ch. 7 - In a certain library the first shelf is 12.0 cm...Ch. 7 - A 75-kg meteorite buries itself 5.0 m into soft...Ch. 7 - A 6.10-kg block is pushed 9.25 m up a smooth 37.0...Ch. 7 - Prob. 74GPCh. 7 - Two forces, F1=(1.50i0.80j+0.70k)Nand...Ch. 7 - The barrels of the 16-in, guns (bore diameter = 16...Ch. 7 - A varying force is given by F = Aekx, where x is...Ch. 7 - The force required to compress an imperfect...Ch. 7 - A force F=(10.0i+9.0j+12.0k)kNacts on a small...Ch. 7 - In the game of paintball, players use guns powered...Ch. 7 - A softball having a mass of 0.25 kg is pitched...Ch. 7 - An airplane pilot fell 370 m after jumping from an...Ch. 7 - Many cars have 5 mi/h (8 km/h) bumpers that are...Ch. 7 - What should be the spring constant k of a spring...Ch. 7 - Assume a cyclist of weight mg can exert a force on...Ch. 7 - A simple pendulum consists of a small object of...Ch. 7 - A car passenger buckles himself in with a seat...Ch. 7 - As an object moves along the x axis from x = 0.0 m...Ch. 7 - A cyclist starts from rest and coasts down a 4.0...Ch. 7 - Stretchable ropes ate used to safely arrest the...Ch. 7 - A small mass m hangs at rest from a vertical rope...Ch. 7 - (II) The net force along the linear path of a...Ch. 7 - (II) When different masses are suspended from a...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. Which of these star clusters is oldest...
Cosmic Perspective Fundamentals
Q24.9 The charged plates of a capacitor attract each other, so to pull the plates farther apart requires work b...
University Physics (14th Edition)
Particles of light have no mass. Does the Sun’s mass change as a result of all the light it emits? Explain.
Modern Physics
Star B has an apparent magnitude of 0, which tells us how bright it appears from Earth at its true location. St...
Lecture- Tutorials for Introductory Astronomy
You allow 40 min to drive 25 mi to the airport, but youre caught in heavy traffic and average only 20 mi/h for ...
Essential University Physics: Volume 1 (3rd Edition)
11. An underground tank with a capacity of 1700 L (1.70 m3) is completely filled with ethanol that has an initi...
College Physics (10th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Write solution detailed solution (Given, Unknown, Formula, Step-by-Step Solution). Box your final answer. Please make sure that your handwritten is readable. Thank you.arrow_forward6:17 1 Introductory Physics Session 2 Questions 44 and 45 are open-response questions. BE SURE TO ANSWER AND LABEL ALL PARTS OF EACH QUESTION. Show all your work (diagrams, tables, or computations) in your Student Answer Booklet. If you do the work in your head, explain in writing how you did the work. Write your answer to question 44 in the space provided in your Student Answer Booklet. 44 When a child presses a button on a toy car, the car produces a long “beep" sound with a frequency of 500 Hz. a. Calculate the period, T, of the beep. Show your calculations and include units in your answer. The sound of the beep travels through air at 340 m/s. b. Calculate the wavelength of the beep. Show your calculations and include units in your answer. The child presses the button and pushes the toy car away. The car moves 5 m before it stops. It continues to beep, even after it stops moving. c. Describe what happens to the amplitude of the beep observed by the child as the car moves away from…arrow_forwardGeneral Physics 1 Assignment 1: Work, Power and Energyarrow_forward
- You need to be more ENERGYtic to answer this! Direction: Do as instructed. 1. Consider the diagram at the right ina answering the next three questions. Five locations along a roller coaster track are shown. Assume that there are negligible friction and air resistance forces acting upon the coaster car. a. Rank the five locations in order of increasing PE (smallest to largest PE). Use and or = signs. A_C i. E A ii. iv. D C E A V. vi. В 2. Read each of the following statements and identify them as having to do with kinetic energy (KE), potential energy (PE) or both (B).arrow_forwardPlease answer in Essay Form. Write legibly. Thank you 1. Explain in detail when work done is positive and work done is negative and under what circumstances (if any) is no work done (zero) on a moving object even though a net force acts on it? 2. One sometimes speaks of the "direction of time", evolving from past to future. Does this mean that time is a vector quantity? Explain your reasoning. 3. The acceleration of a certain moving object is constant in magnitude and direction. Must the path of the object is a straight-line? If not, give an example.arrow_forwardProblem Solving. Answer the following questions and problems below. Show your solutions. 1. Which requires more work: lifting a 10 kg sack of rice to a vertical distance of 2.0 m or lifting a 5 kg sack of rice to a vertical distance of 4.0 m? 2. How many joules of work is done on an object when a force of 10 N pushes it to a distance of 10 m?arrow_forward
- Show the complete solution. Please make sure that your handwritten is readable. Thank you.arrow_forwardTwo objects of different mass start from rest and are pulled horizontally with negligible friction by the same magnitude net force and moved through the same distance. The work done on object 1 is 4000 joules. After the force has pulled each object, object 1 is seen to move with half the speed of object 2. Answer the following questions and show your work. a. How much work is done on object 2? b. What is the kinetic energy of object 1 after being pulled? Explain. C. What is the kinetic energy of object 2 after being pulled? Explain. d. What is the ratio of the mass of object 1 to the mass of object 2? Explain and show work.arrow_forwardkindly help :)arrow_forward
- PROVIDE COMPLETE AND ORGANIZED SOLUTION, IF NECESSARY. INCLUDE UNITS IN THE SOLUTION & FINAL ANSWER. ENCLOSE FINAL ANSWERS IN BOXES 5. A man (on a coaster) slides down a roller coaster, starting from rest, from an initial height of 25 meters as shown in the figure below. The initial potential energy of the man(with the coaster) is 2.6 x 10° J. Assume there is no friction between the coaster and track. A. What is the initial KE of the system? B. What would be the KE of the system at point b? C. What is the KE of the system at point c? D. What is the Speed at point C?arrow_forwardA force of 8 N will stretch a rubber band 4 cm (0.04 m). Assuming that Hooke's law applies, how far will a 12-N force stretch the rubber band? How much work does it take to stretch the rubber band this far? How far will a 12-N force stretch the rubber band? m (Simplify your answer.) How much work does it take to stretch the rubber band this far? J (Simplify your answer.)arrow_forwardPlease solve question 1, 2 and 3 ASAP I really need helparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY