
EBK APPLIED PHYSICS
11th Edition
ISBN: 9780134241173
Author: GUNDERSEN
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Question
Chapter 7.1, Problem 10P
To determine
Find the sum of a set of vectors and the angles in standard position.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to
support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m.
Truck body
yo
Main leaf
spring
-"Helper"
spring
Axle
(a) What is the compression of the leaf spring for a load of 6.00 × 105 N?
Your response differs from the correct answer by more than 10%. Double check your calculations. m
(b) How much work is done in compressing the springs?
☑
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The
incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest?
m
m
0
k
wwww
A block of mass m = 2.50 kg situated on an incline at an angle of
k=100 N/m
www
50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched.
Ө
m
i
(a) How far does it move down the frictionless incline before coming to rest?
m
(b) What is its acceleration at its lowest point?
Magnitude
m/s²
Direction
O up the incline
down the incline
Chapter 7 Solutions
EBK APPLIED PHYSICS
Ch. 7.1 - Find the sum of each set of forces acting at the...Ch. 7.1 - 703 N (right); 829 N (left); 125 N (left); 484 N...Ch. 7.1 - Forces of 225 N and 175 N act at the same point....Ch. 7.1 - Three forces with magnitudes of 225 N, 175 N, and...Ch. 7.1 - Prob. 5PCh. 7.1 - Find the sum of each set of vectors. Give angles...Ch. 7.1 - If forces of 1000N acting in a northerly direction...Ch. 7.1 - If two forces of 100N and 50.0 N, respectively,...Ch. 7.1 - Find the sum of each set of vectors. Give angles...Ch. 7.1 - Prob. 10P
Ch. 7.1 - Prob. 11PCh. 7.1 - Find the sum of each set of vectors. Give angles...Ch. 7.1 - Forces of F1 = 1150 N, F2 = 875 N, and F3 = 1450 N...Ch. 7.1 - Four forces, each of magnitude 2750 lb, act at the...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Find the force F that will produce equilibrium in...Ch. 7.2 - Five persons are having a tug-of-war. Kurt and...Ch. 7.2 - A certain wire can support 6450 lb before it...Ch. 7.2 - The frictional force of a loaded pallet in a...Ch. 7.2 - A bridge has a weight limit of 7.0 tons. How heavy...Ch. 7.2 - A tractor transmission weighing 260N and a...Ch. 7.2 - A skid loader lifts a compressor weighing 672 N...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - Find the forces F1 and F2 that produce equilibrium...Ch. 7.2 - A rope is attached to two buildings and supports a...Ch. 7.2 - A rope is attached to two buildings and supports a...Ch. 7.2 - If the angles between the horizontal and the ropes...Ch. 7.2 - Find the tension in the horizontal supporting...Ch. 7.2 - Find the tension in the horizontal supporting...Ch. 7.2 - An automobile of mass 1550 kg is towed at a steady...Ch. 7.2 - A vehicle that weighs 16,200 N is parked on a 20.0...Ch. 7.2 - Find the tension in the cable and the compression...Ch. 7.2 - The crane shown in Fig. 7.26 is supporting a load...Ch. 7.2 - The crane shown in Fig. 7.27 is supporting a load...Ch. 7.3 - Given:F=16.0lbr=6.00ft=?Ch. 7.3 - Given:F=100Nr=0.420m=?Ch. 7.3 - Prob. 3PCh. 7.3 - Prob. 4PCh. 7.3 - Given:=65.4Nmr=35.0cmF=?Ch. 7.3 - Given:F=630Nr=74.0cm=?Ch. 7.3 - If the torque on a shaft of radius 2.37 cm is 38.0...Ch. 7.3 - If a force of 56.2 lb is applied to a torque...Ch. 7.3 - A motorcycle head bolt is torqued to 25.0 N m....Ch. 7.3 - A force of 112 N is applied to a shaft of radius...Ch. 7.3 - A torque of 175 lb ft is needed to free a large...Ch. 7.3 - A torque wrench reads 14.5 N m. If its length is...Ch. 7.3 - The torque on a shaft of radius 3.00 cm is 12.0 N...Ch. 7.3 - An engine bolt is torqued to 30.0 N m. If the...Ch. 7.3 - A mower bolt is torqued to 65.0 N m. If the length...Ch. 7.3 - An automobile bolt is torqued to 27.0 N m. If the...Ch. 7.3 - A torque wrench reads 25 lb ft. (a) If its length...Ch. 7.3 - If 13 N m of torque is applied to a bolt with an...Ch. 7.3 - If the torque required to loosen a nut on the...Ch. 7.3 - If the torque required to loosen a nut on the...Ch. 7.3 - A truck mechanic must loosen a rusted lug nut. If...Ch. 7.3 - An agricultural mechanic tries to loosen a nut on...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Find the force F that will produce equilibrium for...Ch. 7.4 - Prob. 9PCh. 7.4 - A 5000-lb truck is 20.0 ft from one end of a...Ch. 7.4 - Prob. 11PCh. 7.4 - An auto transmission of mass 165 kg is located...Ch. 7.4 - A bar 8.00 m long supports masses of 20.0 kg on...Ch. 7.4 - Two painters, each of mass 75.0 kg, stand on a...Ch. 7.4 - Two painters, one of mass 75.0 kg and the other...Ch. 7.4 - Two painters stand on a 10.00-m scaffold. One, of...Ch. 7.4 - An auto differential with a mass of 76.0 kg is...Ch. 7.4 - Prob. 18PCh. 7.5 - Solve for F1 : 30.0F1 = (14.0)(18.0) +...Ch. 7.5 - Solve for Fw : (12.0)(15.0) + 45.0Fw =...Ch. 7.5 - Two workers carry a uniform 15.0-ft plank that...Ch. 7.5 - Juan and Pablo carry a load weighing 720 N on a...Ch. 7.5 - A wooden beam is 3.30 m long and has its center of...Ch. 7.5 - An auto engine weighs 650lb and is located 4.00 ft...Ch. 7.5 - A bridge across a country stream weighs 89,200 N....Ch. 7.5 - A window washers scaffold 12.0 ft long and...Ch. 7.5 - A porch swing weighs 29.0 lb. It is 4.40 ft long...Ch. 7.5 - Prob. 10PCh. 7.5 - A bridge has a mass of 1.60 104 kg, is 21.0 m...Ch. 7.5 - A uniform steel beam is 5.00 m long and weighs 360...Ch. 7.5 - A wooden pole is 4.00 m long, weighs 315 N, and...Ch. 7.5 - A bridge has a mass of 2.60 104 kg, is 32.0 m...Ch. 7.5 - An auto engine of mass 295 kg is located 1.00 m...Ch. 7.5 - A 125-kg horizontal beam is supported at each end....Ch. 7.5 - Prob. 17PCh. 7.5 - The uniform bar in Fig. 7.49 is 5.00 m long and...Ch. 7.5 - Find the magnitude, direction, and placement (from...Ch. 7.5 - Find the magnitude, direction, and placement (from...Ch. 7 - Concurrent forces act at a. two or more different...Ch. 7 - The resultant force is a. the last force applied....Ch. 7 - A moving object a. can be in equilibrium. b. is...Ch. 7 - The study of an object in equilibrium is called a....Ch. 7 - Torque is a. applied force in rotational motion....Ch. 7 - The first condition of equilibrium states that a....Ch. 7 - In the second condition of equilibrium. a....Ch. 7 - The center of gravity of an object a. is always at...Ch. 7 - Is motion produced every time a force is applied...Ch. 7 - Prob. 10RQCh. 7 - Define equilibrium.Ch. 7 - In what direction does the force due to gravity...Ch. 7 - What may be said about concurrent forces whose sum...Ch. 7 - What is a force diagram?Ch. 7 - Is the length of the pedal necessarily the true...Ch. 7 - In your own words, explain the second condition of...Ch. 7 - What is the primary consideration in the selection...Ch. 7 - List three examples from daily life in which you...Ch. 7 - Is the center of gravity of an object always at...Ch. 7 - Prob. 20RQCh. 7 - Find the sum of the following forces acting at the...Ch. 7 - Forces of 275 lb and 225 lb act at the same point....Ch. 7 - Prob. 3RPCh. 7 - Prob. 4RPCh. 7 - Prob. 5RPCh. 7 - Forces of F1 = 1250 N, F2 = 625 N, and F3 = 1850 N...Ch. 7 - Eight people are involved in a tug-of-war. The...Ch. 7 - A bridge has a weight limit of 14.0 tons. What is...Ch. 7 - The x-components of three vectors are Fx, 375...Ch. 7 - If Wy=600N and Wx=900N, what are the magnitude and...Ch. 7 - Find forces F1 and F2 that produce equilibrium in...Ch. 7 - Prob. 12RPCh. 7 - Find the tension in the cable and the compression...Ch. 7 - Find the tension in each cable in Fig. 7.51.Ch. 7 - Find the tension in each cable in Fig. 7.52.Ch. 7 - Find the tension and the compression in Fig. 7.53.Ch. 7 - A man is changing a flat tire using a tire iron...Ch. 7 - A torque of 81.0 lb ft is produced by a torque arm...Ch. 7 - A hanging sign has mass 200kg. If the tension in...Ch. 7 - A scaffold supports a bricklayer and bricks...Ch. 7 - Two ladders at the ends of a scaffold support a...Ch. 7 - How far from the light end of a 68.0-cm bat would...Ch. 7 - A bridge has mass 8000kg. If a 3200-kg truck stops...Ch. 7 - If the truck in Problem 23 stops 7.00 m from one...Ch. 7 - A uniform 2.20-kg steel bar with length 2.70 m is...Ch. 7 - Find the vertical force needed to support the...Ch. 7 - A horizontal cable supports the boom of a crane....Ch. 7 - Archeologists in Egypt are attempting to open a...Ch. 7 - Sean and Greg are on a job site standing on two...Ch. 7 - Maria has severe arthritis and can apply a maximum...Ch. 7 - Kristas flagpole bracket is mounted at an angle of...Ch. 7 - Prob. 5AC
Knowledge Booster
Similar questions
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
- Question: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forwardA,B,C AND Darrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 210. Sometimes the Helmholtz free energy F(T, V, N) divided by temperature, T, is an interesting quantity. For example, the quantity is proportional to the logarithm of the equilibrium constant or solubilities. A. Derive a relationship showing that Find the constant of proportionality. a F αυ ƏT T B. Suppose F(T) depends on temperature in the following way: F(T)=2aT²+bT. Find S(T) and U(T).arrow_forwardchoosing East (e) is not correct!arrow_forwarddisks have planes that are parallel and centered Three polarizing On a common axis. The direction of the transmission axis Colish dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with int intensity So = 790 W/m². Calculate the transmitted intensity if 81=28.0° O2-35.0°, and O3 = 40.0° w/m² horizontal Өз 02arrow_forward
- A polarized light is incident on several polarizing disks whose planes are parallel and centered on common axis. Suppose that the transmission axis of the first polarizer is rotated 20° relative to the axis of polarization of the incident and that the transmission axis of each exis of light, additional analyzer is rotated 20° relative to the transmission axis the previous one. What is the minimum number of polarizer needed (whole number), so the transmitted light through all polarizing sheets has an Striking intensity that is less then 10% that the first polarizer?arrow_forwardA high energy pulsed laser emits 1.5 nano second-long pulse of average power 1.80x10" W. The beam is cylindrical with 2.00 mm in radius. Determine the rms value of the B-field? -Tarrow_forwardA 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON