FLUID MECHANICS FUNDAMENTALS+APPS
4th Edition
ISBN: 2810022150991
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Question
Chapter 7, Problem 91P
To determine
The primary dimensions of the universal ideal gas constant in F-L-T system.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the following equation is dimensionally homogeneous, find the dimensions of the
physical quantity K indicated in the system of fundamental physical quantities:
Length, Mass and Time.
Ep -G
Mm
K
where Ep is the gravitational potential energy (same units as the kinetic energy
E mv²/2), M and m are the mass of the earth and the mass of the body, respectively,
and G is the universal gravitation constant
G~ 6,67 x 10-11
N m²
kg²
7-67 A liquid of density p and viscosity u is pumped at volume flow rate b through a pump of diameter D. The blades of the pump rotate at angular velocity w. The
pump supplies a pressure rise AP to the liquid. Using dimensional analysis, generate a dimensionless relationship for AP as a function of the other parameters in
the problem. Identify any established nondimensional parameters that appear in your result. Hint: For consistency (and whenever possible), it is wise to choose a
length, a density, and a velocity (or angular velocity) as repeating variables.
Hi, Please help me with this question and show the full solution,. Thank you very much
Chapter 7 Solutions
FLUID MECHANICS FUNDAMENTALS+APPS
Ch. 7 - What is the difference between a dimension and a...Ch. 7 - List the seven primary dimensions. What is...Ch. 7 - Write the primary dimensions of the universal...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - On a periodic chart of the elements, molar mass...Ch. 7 - Prob. 9PCh. 7 - The moment of force(M)is formed by the cross...
Ch. 7 - You are probably familiar with Ohm law for...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 13PCh. 7 - Thermal conductivity k is a measure of the ability...Ch. 7 - Write the primary dimensions of each of the...Ch. 7 - Prob. 16PCh. 7 - Explain the law of dimensional homogeneity in...Ch. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - An important application of fluid mechanics is the...Ch. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - In Chap. 4, we defined the material acceleration,...Ch. 7 - Newton's second law is the foundation for the...Ch. 7 - What is the primary reason for nondimensionalizing...Ch. 7 - Prob. 26PCh. 7 - In Chap. 9, we define the stream function for...Ch. 7 - In an oscillating incompressible flow field the...Ch. 7 - Prob. 29PCh. 7 - Consider ventilation of a well-mixed room as in...Ch. 7 - In an oscillating compressible flow field the...Ch. 7 - List the three primary purposes of dimensional...Ch. 7 - List and describe the three necessary conditions...Ch. 7 - A student team is to design a human-powered...Ch. 7 - Repeat Prob. 7-34 with all the same conditions...Ch. 7 - This is a follow-tip to Prob. 7-34. The students...Ch. 7 - The aerodynamic drag of a new sports car is lo be...Ch. 7 - This is a follow-tip to Prob. 7-37E. The...Ch. 7 - Consider the common situation in which a...Ch. 7 - Prob. 40PCh. 7 - Some students want to visualize flow over a...Ch. 7 - A lightweight parachute is being designed for...Ch. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - The Richardson number is defined as Ri=L5gV2...Ch. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - A stirrer is used to mix chemicals in a large tank...Ch. 7 - Prob. 50PCh. 7 - Albert Einstein is pondering how to write his...Ch. 7 - Consider filly developed Couette flow-flow between...Ch. 7 - Consider developing Couette flow-the same flow as...Ch. 7 - The speed of sound c in an ideal gas is known to...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Repeat Prob. 7-54, except let the speed of sound c...Ch. 7 - Prob. 57PCh. 7 - When small aerosol particles or microorganisms...Ch. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - Prob. 61PCh. 7 - An incompressible fluid of density and viscosity ...Ch. 7 - Prob. 63PCh. 7 - In the study of turbulent flow, turbulent viscous...Ch. 7 - Bill is working on an electrical circuit problem....Ch. 7 - A boundary layer is a thin region (usually along a...Ch. 7 - A liquid of density and viscosity is pumped at...Ch. 7 - A propeller of diameter D rotates at angular...Ch. 7 - Repeat Prob. 7-68 for the case an which the...Ch. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Consider a liquid in a cylindrical container in...Ch. 7 - Prob. 73PCh. 7 - One of the first things you learn in physics class...Ch. 7 - Prob. 75CPCh. 7 - Prob. 76CPCh. 7 - Define wind tunnel blockage. What is the rule of...Ch. 7 - Prob. 78CPCh. 7 - Prob. 79CPCh. 7 - In the model truck example discussed in Section...Ch. 7 - Prob. 83PCh. 7 - A small wind tunnel in a university's...Ch. 7 - There are many established nondimensional...Ch. 7 - Prob. 86CPCh. 7 - For each statement, choose whether the statement...Ch. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - From fundamental electronics, the current flowing...Ch. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - The Archimedes number listed in Table 7-5 is...Ch. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Repeal Prob. 7-100 except for a different...Ch. 7 - A liquid delivery system is being designed such...Ch. 7 - Prob. 103PCh. 7 - Au aerosol particle of characteristic size DPmoves...Ch. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - Prob. 110PCh. 7 - Repeat pall (a) of Prob. 7-110, except instead of...Ch. 7 - Sound intensity I is defined as the acoustic power...Ch. 7 - Repeal Prob. 7-112, but with the distance r from...Ch. 7 - Engineers at MIT have developed a mechanical model...Ch. 7 - Prob. 116PCh. 7 - Prob. 117PCh. 7 - An electrostatic precipitator (ESP) is a device...Ch. 7 - Prob. 119PCh. 7 - Prob. 120PCh. 7 - Prob. 121PCh. 7 - Prob. 122PCh. 7 - Prob. 123PCh. 7 - Prob. 124PCh. 7 - The primary dimensions of kinematic viscosity are...Ch. 7 - There at four additive terms in an equation, and...Ch. 7 - Prob. 127PCh. 7 - Prob. 128PCh. 7 - Prob. 129PCh. 7 - A one-third scale model of a car is to be tested...Ch. 7 - Prob. 131PCh. 7 - A one-third scale model of an airplane is to be...Ch. 7 - Prob. 133PCh. 7 - Prob. 134PCh. 7 - Consider a boundary layer growing along a thin...Ch. 7 - Prob. 136P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Please answer this question using methods of repeating variables/ dimensional analysis. Thank youarrow_forwardWhen a liquid in a beaker is stired, whirlpool will form and there will be an elevation difference h, between the center of the liquid surface and the rim of the liquid surface. Apply the method of repeating variables to generate a dimensional relationship for elevation difference (h), angular velocity (@) of the whirlpool, fluid density (p). gravitational acceleration (2), and radius (R) of the container. Take o. pand R as the repeating variables.arrow_forwardThe Reynolds transport theorem (RTT) is discussed in Chap. 4 of your textbook. For the general case of a moving and/or deforming control volume, we write the RTT as follows: d pb dV + pbV-ñ dA dt dt dB sys where Vr is the relative velocity, i.e., the velocity of the fluid relative to the control surface. Write the primary dimensions of each additive term in the equation and verify that the equation is dimensionally homogeneous. Show all your work. (Hint: Since B can be any property of the flow-scalar, vector, or even tensor—it can have a variety of dimensions. So, just let the dimensions of B be those of B itself, {B}. Also, b is defined as B per unit mass.)arrow_forward
- In the study of turbulent flow, turbulent viscous dissipation rate ? (rate of energy loss per unit mass) is known to be a function of length scale l and velocity scale u′ of the large-scale turbulent eddies. Using dimensional analysis (Buckingham pi and the method of repeating variables) and showing all of your work, generate an expression for ? as a function of l and u′.arrow_forwardUsing primary dimensions, verify that the Grashof number is indeed dimensionless.arrow_forwardHow can I use dimensional analysis to show that in this problem both Froude's number and Reynold's number are relevant dimensionless parameters? Problem: Here shallow waves move at speed c. The surface of the waves is a function depth (h), gravitational accelaration is g, densisty is p and fluid viscosity is μ. I need to get the parameter in the form in the image. Please help :)arrow_forward
- A Fluid Mechanics, Third Edition - Free PDF Reader E3 Thumbnails 138 FLUID KINEMATICS Fluid Mechanies Fundamenteis and Applicationu acceleration); this term can be nonzero even for steady flows. It accounts for the effect of the fluid particle moving (advecting or convecting) to a new location in the flow, where the velocity field is different. For example, nunan A Çengel | John M. Cinbala consider steady flow of water through a garden hose nozzle (Fig. 4-8). We define steady in the Eulerian frame of reference to be when properties at any point in the flow field do not change with respect to time. Since the velocity at the exit of the nozzle is larger than that at the nozzle entrance, fluid particles clearly accelerate, even though the flow is steady. The accel- eration is nonzero because of the advective acceleration terms in Eq. 4-9. FLUID MECHANICS FIGURE 4-8 Flow of water through the nozzle of a garden hose illustrates that fluid par- Note that while the flow is steady from the…arrow_forwardI need an answer quicklyarrow_forwardExample: The pressure difference (Ap) between two point in a pipe due to turbulent flow depends on the velocity (V), diameter (D), dynamic viscosity (µ), density (p), roughness size (e), and distance between the points (L). using dimensional analysis determine the general form of the expression (use MLT system).arrow_forward
- Evaluate the use of dimensionless analysis using the Buckingham Pi Theorem for a given fluid flow system (D4) , where resistance tomotion ‘R’ for a sphere of diameter ‘D’ moving at constant velocity on the surface of a liquid is due to the density ‘ρ’ and the surfacewaves produced by the acceleration of gravity ‘g’. The dimensionless quantity linking these quantities is Ne= Function (Fr). To do thisyou must apply dimensional analysis to fluid flow system given in Figure 1 (P11). PICTURE IS ALSO ATTACHEDarrow_forwardCan you please answer thisarrow_forwardWrite the primary dimensions of each of the following variables from the field of solid mechanics, showing all your work: (a) moment of inertia I; (b) modulus of elasticity E, also called Young’s modulus; (c) strain ? ; (d) stress ?. (e) Finally, show that the relationship between stress and strain (Hooke’s law) is a dimensionally homogeneous equation.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Unit Conversion the Easy Way (Dimensional Analysis); Author: ketzbook;https://www.youtube.com/watch?v=HRe1mire4Gc;License: Standard YouTube License, CC-BY