
BIO Metabolic rate Energy for our activities is provided by the chemical energy of the foods we eat. The absolute value of the rate of conversion of this chemical energy into other forms of energy (ΔE/Δt) is called the metabolic rate. The metabolic rate depends on many factors-a person’s weight, physical activity, the efficiency of bodily processes, and the fat-muscle ratio. Table 7.9 lists the metabolic rates of people under several different conditions and in several different units of measure:
1 kcal = 1000 calories = 4186 J. Dieticians call a kcal simply a Cal. A piece of bread provides about 70 kcal of metabolic energy.
Type of activity | ΔE/Δt (watts) | ΔE/Δt(kcal/h) | ΔE/Δt(kcal/day) |
45-kg person at rest | 80 | 70 | 1600 |
68-kg person at rest | 100 | 90 | 2100 |
90-kg person at rest | 120 | 110 | 2600 |
68-kg person walking 3 mph | 280 | 240 | 5800 |
68-kg person moderate exercise | 470 | 400 | 10,000 |
68-kg person heavy exercise | 700 | 600 | 14,000 |
In 1 hour of heavy exercise a 68-kg person metabolizes 600 kcal – 90 kcal = 510 kcal more energy than when at rest. Typically, reducing kilocalorie intake by 3500 kcal (either by burning it in exercise or not consuming it in the first place) results in a loss of 0.45 kg og body mass (the mass is lost through exhaling carbon dioxide-the product of
EST A 68-kg person walks at 5 km per hour for 1 hour a day for 1 year. Estimate the extra number of kilocalories of energy used because of the walking.
a. 40,000 kcal
b. 47,000 kcal
c. 88,000 kcal
d. 150,000 kcal

Want to see the full answer?
Check out a sample textbook solution
Chapter 7 Solutions
Modified Mastering Physics with Pearson eText -- Access Card -- for College Physics: Explore and Apply (18-Weeks)
Additional Science Textbook Solutions
Human Physiology: An Integrated Approach (8th Edition)
Cosmic Perspective Fundamentals
College Physics: A Strategic Approach (3rd Edition)
Microbiology with Diseases by Body System (5th Edition)
Chemistry: A Molecular Approach (4th Edition)
Campbell Biology: Concepts & Connections (9th Edition)
- 20. Two small conducting spheres are placed on top of insulating pads. The 3.7 × 10-10 C sphere is fixed whie the 3.0 × 107 C sphere, initially at rest, is free to move. The mass of each sphere is 0.09 kg. If the spheres are initially 0.10 m apart, how fast will the sphere be moving when they are 1.5 m apart?arrow_forwardpls help on allarrow_forwardpls help on thesearrow_forward
- pls help on all asked questions kindlyarrow_forwardpls help on all asked questions kindlyarrow_forward19. Mount Everest, Earth's highest mountain above sea level, has a peak of 8849 m above sea level. Assume that sea level defines the height of Earth's surface. (re = 6.38 × 106 m, ME = 5.98 × 1024 kg, G = 6.67 × 10 -11 Nm²/kg²) a. Calculate the strength of Earth's gravitational field at a point at the peak of Mount Everest. b. What is the ratio of the strength of Earth's gravitational field at a point 644416m below the surface of the Earth to a point at the top of Mount Everest? C. A tourist watching the sunrise on top of Mount Everest observes a satellite orbiting Earth at an altitude 3580 km above his position. Determine the speed of the satellite.arrow_forward
- pls help on allarrow_forwardpls help on allarrow_forward6. As the distance between two charges decreases, the magnitude of the electric potential energy of the two-charge system: a) Always increases b) Always decreases c) Increases if the charges have the same sign, decreases if they have the opposite signs d) Increases if the charges have the opposite sign, decreases if they have the same sign 7. To analyze the motion of an elastic collision between two charged particles we use conservation of & a) Energy, Velocity b) Momentum, Force c) Mass, Momentum d) Energy, Momentum e) Kinetic Energy, Potential Energyarrow_forward
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





