Physics
Physics
5th Edition
ISBN: 9781260486919
Author: GIAMBATTISTA
Publisher: MCG
bartleby

Videos

Question
Book Icon
Chapter 7, Problem 7P
To determine

Rank the birds according to the smallest change in momentum to the largest.

Expert Solution & Answer
Check Mark

Answer to Problem 7P

Rank the birds is (b),(a)=(e),(c),(d),(f).

Explanation of Solution

Write an expression to calculate the change in momentum of the bird.

Δp=mΔv=m(vfvi)

Here, Δp is the change in momentum, m is the mass of the bird, Δv is the change in velocity of the bird, vf is the final velocity and vi is the initial velocity of the bird.

Conclusion:

Consider east and north as positive perpendicular axes and south and west as negative perpendicular axes.

Substitute 200g for m, 10m/s for vf, 10m/s for vi in equation (I) to find Δp for bird (a).

Δp=(200g(1kg103g))(10m/s(10m/s))=(200×103kg)(20m/s)=4.0kgm/snorth

Substitute 200g for m, 10m/s i^ for vf, 10m/sj^ for vi in equation (I) to find Δp for bird (b).

Δp=(200g(1kg103g))(10m/s i^(10m/sj^))=(200×103kg)(10m/s i^+10m/sj^)=2.0kgm/s(i^+j^)=2.0kgm/s(east-south)

Use Pythagoras theorem to calculate the magnitude of the change in momentum.

|Δp|=(2.0kgm/s)2+(2.0kgm/s)2=2(2.0kgm/s)=2.8kgm/s

Substitute 200g for m, 20m/s for vf, 10m/s for vi in equation (I) to find Δp for bird (c).

Δp=(200g(1kg103g))(20m/s(10m/s))=(200×103kg)(30m/s)=6.0kgm/snorth

Substitute 400g for m, 20m/s for vf, 10m/s for vi in equation (I) to find Δp for bird (d).

Δp=(400g(1kg103g))(20m/s(10m/s))=(400×103kg)(30m/s)=12kgm/snorth

Substitute 400g for m, 20m/s for vf, 10m/s for vi in equation (I) to find Δp for bird (e).

Δp=(400g(1kg103g))(20m/s(10m/s))=(400×103kg)(10m/s)=4.0kgm/s=4.0kgm/ssouth

Substitute 400g for m, 30m/s i^ for vf, 10m/sj^ for vi in equation (I) to find Δp for bird (f).

Δp=(400g(1kg103g))(30m/s i^(10m/sj^))=(400×103kg)(30m/s i^+10m/sj^)=4.0kgm/s(3i^+1j^)=4.0kgm/s(3west-south)

Use Pythagoras theorem to calculate the magnitude of the change in momentum.

|Δp|=(3(4.0kgm/s))2+(4.0kgm/s)2=(32+12)(4.0kgm/s)=10(4.0kgm/s)=13kgm/s

Thus, rank the birds is (b),(a)=(e),(c),(d),(f).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
If a proton is located on the x-axis in some coordinate system at x0 = -3.2 x 10-5 meters, what is the x-component of the Electric Field due to this proton at a position x = +3.2 x 10-5 meters and on the x axis as the y-axis is 0 giving a number of Newtons/Coulomb?
Consider a single square loop of wire of area A carrying a current I in a uniform magnetic field of strength B. The field is pointing directly up the page in the plane of the page. The loop is oriented so that the plane of the loop is perpendicular to the plane of the page (this means that the normal vector for the loop is always in the plane of the page!). In the illustrations below the magnetic field is shown in red and the current through the current loop is shown in blue. The loop starts out in orientation (i) and rotates clockwise, through orientations (ii) through (viii) before returning to (i). (i) Ø I N - - I N - (iii) (iv) (v) (vii) (viii) a) [3 points] For each of the eight configurations, draw in the magnetic dipole moment vector μ of the current loop and indicate whether the torque on the dipole due to the magnetic field is clockwise (CW), counterclockwise (CCW), or zero. In which two orientations will the loop experience the maximum magnitude of torque? [Hint: Use the…
Please help with calculating the impusle, thanks! Having calculated the impact and rebound velocities of the ping pong ball and the tennis ball calculate the rebounding impulse: 1.Measure the weight of the balls and determine their mass. Tennis ball: 0.57 kg Ping Pong Ball: 0.00246 kg The impulse, I, is equal to the change in momentum, Pf-Pi. Note the sign change, i.e., going down is negative and up is positive. The unit for momentum is kg-m/s. The change is momentum, impulse, is often givens the equivalent unit of N-S, Newton-Second

Chapter 7 Solutions

Physics

Ch. 7.6 - Practice Problem 7.8 Diana and the Raft Diana...Ch. 7.7 - Prob. 7.9PPCh. 7.7 - Prob. 7.7ACPCh. 7.7 - Prob. 7.7BCPCh. 7.7 - Prob. 7.10PPCh. 7.8 - Prob. 7.11PPCh. 7 - Prob. 1CQCh. 7 - Prob. 2CQCh. 7 - 3. If you take a rifle and saw off part of the...Ch. 7 - Prob. 4CQCh. 7 - Prob. 5CQCh. 7 - Prob. 6CQCh. 7 - 7. Which would be more effective: a hammer that...Ch. 7 - Prob. 8CQCh. 7 - Prob. 9CQCh. 7 - Prob. 10CQCh. 7 - Prob. 11CQCh. 7 - Prob. 12CQCh. 7 - 13. In an egg toss, two people try to toss a raw...Ch. 7 - 14. In the “executive toy,” two balls are pulled...Ch. 7 - Prob. 15CQCh. 7 - Prob. 16CQCh. 7 - Prob. 1MCQCh. 7 - Prob. 2MCQCh. 7 - Prob. 3MCQCh. 7 - Prob. 4MCQCh. 7 - Prob. 5MCQCh. 7 - Prob. 6MCQCh. 7 - Prob. 7MCQCh. 7 - Prob. 8MCQCh. 7 - Prob. 9MCQCh. 7 - Prob. 10MCQCh. 7 - Prob. 11MCQCh. 7 - Prob. 12MCQCh. 7 - Prob. 1PCh. 7 - Prob. 2PCh. 7 - Prob. 3PCh. 7 - Prob. 4PCh. 7 - Prob. 5PCh. 7 - Prob. 6PCh. 7 - Prob. 7PCh. 7 - Prob. 8PCh. 7 - Prob. 9PCh. 7 - Prob. 10PCh. 7 - Prob. 11PCh. 7 - Prob. 12PCh. 7 - Prob. 13PCh. 7 - Prob. 14PCh. 7 - Prob. 15PCh. 7 - Prob. 16PCh. 7 - Prob. 17PCh. 7 - Prob. 18PCh. 7 - Prob. 19PCh. 7 - 20. A pole-vaulter of mass 60.0 kg vaults to a...Ch. 7 - Prob. 21PCh. 7 - Prob. 22PCh. 7 - Prob. 23PCh. 7 - Prob. 24PCh. 7 - Prob. 25PCh. 7 - Prob. 26PCh. 7 - Prob. 27PCh. 7 - Prob. 28PCh. 7 - Prob. 29PCh. 7 - Prob. 30PCh. 7 - Prob. 31PCh. 7 - Prob. 32PCh. 7 - Prob. 33PCh. 7 - Prob. 34PCh. 7 - Prob. 35PCh. 7 - Prob. 36PCh. 7 - Prob. 37PCh. 7 - Prob. 38PCh. 7 - Prob. 39PCh. 7 - Prob. 40PCh. 7 - Prob. 41PCh. 7 - Prob. 42PCh. 7 - Prob. 43PCh. 7 - Prob. 44PCh. 7 - Prob. 45PCh. 7 - Prob. 46PCh. 7 - Prob. 47PCh. 7 - Prob. 48PCh. 7 - Prob. 49PCh. 7 - Prob. 50PCh. 7 - Prob. 51PCh. 7 - Prob. 52PCh. 7 - Prob. 53PCh. 7 - Prob. 54PCh. 7 - Prob. 55PCh. 7 - Prob. 56PCh. 7 - Prob. 57PCh. 7 - Prob. 58PCh. 7 - Prob. 59PCh. 7 - Prob. 60PCh. 7 - 61. A firecracker is tossed straight up into the...Ch. 7 - Prob. 62PCh. 7 - Prob. 63PCh. 7 - Prob. 64PCh. 7 - Prob. 65PCh. 7 - Prob. 66PCh. 7 - Prob. 67PCh. 7 - Prob. 68PCh. 7 - Prob. 69PCh. 7 - Prob. 70PCh. 7 - Prob. 71PCh. 7 - Prob. 72PCh. 7 - Prob. 73PCh. 7 - Prob. 75PCh. 7 - Prob. 74PCh. 7 - Prob. 76PCh. 7 - Prob. 77PCh. 7 - Prob. 78PCh. 7 - Prob. 80PCh. 7 - Prob. 79PCh. 7 - Prob. 81PCh. 7 - Prob. 82PCh. 7 - Prob. 83PCh. 7 - Prob. 84PCh. 7 - Prob. 85PCh. 7 - Prob. 86PCh. 7 - Prob. 87PCh. 7 - Prob. 88PCh. 7 - Prob. 89PCh. 7 - Prob. 90PCh. 7 - Prob. 91PCh. 7 - Prob. 92PCh. 7 - Prob. 93PCh. 7 - Prob. 94PCh. 7 - Prob. 95PCh. 7 - Prob. 96PCh. 7 - Prob. 97PCh. 7 - Prob. 98PCh. 7 - Prob. 99PCh. 7 - Prob. 100PCh. 7 - Prob. 110PCh. 7 - Prob. 101PCh. 7 - Prob. 102PCh. 7 - Prob. 103PCh. 7 - Prob. 104PCh. 7 - Prob. 105PCh. 7 - Prob. 106PCh. 7 - Prob. 107PCh. 7 - Prob. 108PCh. 7 - Prob. 109PCh. 7 - 111. A 0.122 kg dart is fired from a gun with a...
Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Text book image
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Text book image
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
Text book image
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
Momentum | Forces & Motion | Physics | FuseSchool; Author: FuseSchool - Global Education;https://www.youtube.com/watch?v=DxKelGugDa8;License: Standard YouTube License, CC-BY