
(a)
The spaceship having greater kinetic energy and that having greater momentum if both the engines are fired for same time.
(a)

Answer to Problem 108P
The Vulcan spaceship will have greater kinetic energy and both the ships will have same momentum if both the engines are fired for same time.
Explanation of Solution
Given that the mass of Vulcan spaceship is
Write the expression for the distance travelled by the spaceship.
Here,
Modify the equation (I) using Newton’s second law.
Here,
Write the expression for the work done on the spaceship by the engine.
Here,
According to work energy theorem, the work done is equal to change in kinetic energy
Use equation (II) in (III).
Write the expression for the change in momentum of the spaceships.
Here,
Conclusion:
Equation (V) indicate that, the change in kinetic energy of the spaceships is inversely proportional to its mass. Since both the spaceships are starting from rest, the spaceship with lesser mass will have greater change in kinetic energy and hence the Vulcan ship will have greater kinetic energy.
Since both the spaceships are provided with same force and same duration of engine firing, according to equation (VI) both the ships will have same change in momentum, and hence both the sips will have same momentum.
Therefore, the Vulcan spaceship will have greater kinetic energy and both the ships will have same momentum if both the engines are fired for same time.
(b)
The spaceship having greater kinetic energy and that having greater momentum if both the engines are fired for same distance.
(b)

Answer to Problem 108P
Both the ships will have same momentum, and the Romulan spaceship will have greater kinetic energy if both the engines are fired for same distance.
Explanation of Solution
Given that the mass of Vulcan spaceship is
Equation (IV) gives the change in kinetic energy of the spaceships.
Equation (VI) indicates that the change in momentum of the spaceships is directly proportional to the time for which the engine is fired.
Conclusion:
The force and the distance for which the engine fired are same for both the spaceships, This results the change in kinetic energy of the spaceships to be the same according to equation (IV). Since both ships are starting from rest, both will have same kinetic energy.
The more massive ship needs to fire its engine for long time to cover a particular distance. Thus, according to equation (VI), the change in momentum will be greater for the Romulan ship. Hence, Romulan ship will have greater momentum.
Therefore, both the ships will have same momentum, and the Romulan spaceship will have greater kinetic energy if both the engines are fired for same distance.
(c)
The kinetic energy and momentum of the spaceships when they are fired for same time and when they are fired for same distance.
(c)

Answer to Problem 108P
When the ships are fired for same time, the kinetic energy of Vulcan ship is
Explanation of Solution
Given that in part (a), the mass of Vulcan spaceship is
Equation (V) gives the kinetic energy of the spaceships.
Equation (VI) gives the momentum of both the ships.
Given that in part (b), the engines are fired for
Equation (IV) gives the kinetic energy of both the spaceships when the engines are fired for same distance.
Write the expression for the momentum of the spaceship in terms of its kinetic energy.
Conclusion:
Consider the condition in part (a), the engines are fired for same time.
Substitute
Substitute
Substitute
Consider the condition in part (b), the engines are fired for same distance.
Substitute
Substitute
Substitute
Therefore, when the ships are fired for same time, the kinetic energy of Vulcan ship is
Want to see more full solutions like this?
Chapter 7 Solutions
Physics
- What is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forwardAn ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forward
- The outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forwardThe heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forward
- L₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forwardA cheetah spots a gazelle in the distance and begins to sprint from rest, accelerating uniformly at a rate of 8.00 m/s^2 for 5 seconds. After 5 seconds, the cheetah sees that the gazelle has escaped to safety, so it begins to decelerate uniformly at 6.00 m/s^2 until it comes to a stop.arrow_forward
- A projectile is fired with an initial speed of 40.2 m/s at an angle of 35.0 degree above the horizontal on a long flat firing range. Determine. please help and show work for them so i can understand.arrow_forwardpls helparrow_forwardJ K L The graph in the figure shows the position of an object as a function of time. The letters H-L represent particular moments of time. At which moments shown (H, I, etc.) is the speed of the object the greatest? + Position H I K Timearrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





